from torch import nn class Net(nn.Module): """4 layer model, different activations and neurons count on layer """ def __init__(self,input_dim:int=2,hidden_dim:int=200): """Init Args: input_dim (int, optional): Defaults to 2. hidden_dim (int, optional): Defaults to 200. """ super(Net,self).__init__() self.input = nn.Linear(input_dim,40) self.act1 = nn.Tanh() self.layer = nn.Linear(40,80) self.act2 = nn.ReLU() self.layer1 = nn.Linear(80,hidden_dim) self.act3 = nn.ReLU() self.layer2 = nn.Linear(hidden_dim,1) def forward(self, x): x = self.act2(self.layer(self.act1(self.input(x)))) x = self.act3(self.layer1(x)) x = self.layer2(x) return x