from utils.data_augmentation import dataset import os import _pickle import pandas as pd def get_dataset(raw:bool=False, sample_size:int=1000, name:str='dataset.pkl',source:str='dataset.csv',boundary_conditions:list=None) -> _pickle: """ Gets augmented dataset Args: raw (bool, optional): either to use source data or augmented. Defaults to False. sample_size (int, optional): sample size. Defaults to 1000. name (str, optional): name of wanted dataset. Defaults to 'dataset.pkl'. boundary_conditions (list,optional): y1,y2,x1,x2. Returns: _pickle: pickle buffer """ print(os.listdir('./data')) if not(raw): if name not in os.listdir('./data'): ldat = dataset(sample_size,name,source,boundary_conditions) ldat.generate() with open(f"./data/{name}", "rb") as input_file: buffer = _pickle.load(input_file) else: with open(f"./data/{source}", "rb") as input_file: buffer = pd.read_csv(input_file) return buffer