Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -81,12 +81,21 @@ def interpret_ragas_results_with_gpt(formatted_scores: list, llm) -> str:
|
|
81 |
score_text = "\n".join([f"{k}: {v}" for k, v in formatted_scores[0].items()])
|
82 |
|
83 |
prompt = f"""
|
84 |
-
You are an expert in RAGAS evaluation metrics to evaluate AI-generated content.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
RAGAS Scores:
|
87 |
{score_text}
|
88 |
|
89 |
-
Provide a paragraph
|
90 |
"""
|
91 |
|
92 |
response = llm.invoke(prompt)
|
@@ -107,7 +116,7 @@ def generate_word_report(science_goal, ragas_results, radar_chart_path, interpre
|
|
107 |
doc.add_heading("RAGAS Metrics Chart", level=1)
|
108 |
doc.add_picture(radar_chart_path, width=Inches(5))
|
109 |
|
110 |
-
doc.add_heading("GPT Interpretation", level=1)
|
111 |
doc.add_paragraph(interpretation)
|
112 |
|
113 |
output_path = "SCDD_Evaluation_Report.docx"
|
@@ -169,9 +178,9 @@ interface = gr.Interface(
|
|
169 |
gr.Textbox(label="Science Goal", placeholder="Enter science goal here..."),
|
170 |
],
|
171 |
outputs=[
|
172 |
-
gr.JSON(label="RAGAS Scores"),
|
173 |
gr.Image(label="RAGAS Metrics Radar Chart"),
|
174 |
-
gr.Textbox(label="GPT Interpretation of RAGAS Results"),
|
175 |
gr.File(label="Download Word Report")
|
176 |
],
|
177 |
title="RAGAS Evaluation: AI vs Human SCDD",
|
|
|
81 |
score_text = "\n".join([f"{k}: {v}" for k, v in formatted_scores[0].items()])
|
82 |
|
83 |
prompt = f"""
|
84 |
+
You are an expert in RAGAS evaluation metrics to evaluate AI-generated content.
|
85 |
+
|
86 |
+
The following RAGAS evaluation scores are from a comparison between an AI-generated scientific case development document (SCDD) and a human-written version. This evaluation is conducted in the context of exploratory and novel scientific use cases — not strict academic summaries. The AI-generated document may include new ideas, restructured concepts, or facts not explicitly mentioned in the human reference.
|
87 |
+
|
88 |
+
When interpreting the metrics, adopt a constructive and exploratory perspective. In particular:
|
89 |
+
|
90 |
+
- **Lower factual correctness or accuracy scores or response groundedness scores** do not necessarily indicate factual errors. They may reflect the presence of new, valid information introduced by the AI that isn’t present in the human document.
|
91 |
+
- **Semantic similarity** and **faithfulness** may vary due to phrasing, abstraction, or granularity, and should be considered within the context of novelty and creativity.
|
92 |
+
- AI-generated document may be identifying gaps or elements missing from the human reference.
|
93 |
+
- Interpret each score clearly, explaining both strengths and areas where alignment may differ, without penalizing innovation or deeper insight.
|
94 |
|
95 |
RAGAS Scores:
|
96 |
{score_text}
|
97 |
|
98 |
+
Provide a short paragraph interpretation for each metric.
|
99 |
"""
|
100 |
|
101 |
response = llm.invoke(prompt)
|
|
|
116 |
doc.add_heading("RAGAS Metrics Chart", level=1)
|
117 |
doc.add_picture(radar_chart_path, width=Inches(5))
|
118 |
|
119 |
+
doc.add_heading("GPT-4.1 Interpretation of RAGAS AI-SCDD Evaluation", level=1)
|
120 |
doc.add_paragraph(interpretation)
|
121 |
|
122 |
output_path = "SCDD_Evaluation_Report.docx"
|
|
|
178 |
gr.Textbox(label="Science Goal", placeholder="Enter science goal here..."),
|
179 |
],
|
180 |
outputs=[
|
181 |
+
gr.JSON(label="RAGAS Evaluation Scores"),
|
182 |
gr.Image(label="RAGAS Metrics Radar Chart"),
|
183 |
+
gr.Textbox(label="GPT-4.1 Interpretation of RAGAS Results"),
|
184 |
gr.File(label="Download Word Report")
|
185 |
],
|
186 |
title="RAGAS Evaluation: AI vs Human SCDD",
|