File size: 2,161 Bytes
d349925
11d423c
d349925
 
11d423c
4295e2c
11d423c
 
 
 
 
 
 
d349925
 
11d423c
 
b3a1556
d349925
 
4295e2c
 
 
76e9582
4295e2c
 
 
 
 
 
 
 
 
 
11d423c
76e9582
11d423c
d349925
4295e2c
 
 
11d423c
d349925
 
 
 
4295e2c
d349925
4295e2c
 
d349925
 
 
 
b3a1556
76e9582
11d423c
4295e2c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import gradio as gr
from transformers import AutoTokenizer, AutoModel, GPT2LMHeadModel, GPT2Tokenizer
import torch

# Load the bi-encoder model and tokenizer
bi_encoder_model_name = "sentence-transformers/all-MiniLM-L6-v2"
bi_tokenizer = AutoTokenizer.from_pretrained(bi_encoder_model_name)
bi_model = AutoModel.from_pretrained(bi_encoder_model_name)

# Load the GPT-2 model and tokenizer for response generation
gpt2_model_name = "gpt2"
gpt2_tokenizer = GPT2Tokenizer.from_pretrained(gpt2_model_name)
gpt2_model = GPT2LMHeadModel.from_pretrained(gpt2_model_name)

def encode_text(text):
    inputs = bi_tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=128)
    outputs = bi_model(**inputs)
    # Ensure the output is 2D by averaging the last hidden state along the sequence dimension
    return outputs.last_hidden_state.mean(dim=1).detach().numpy()

def generate_response(user_input, context_embedding):
    # Combine user input with context embedding for GPT-2 input
    combined_input = user_input + " " + context_embedding
    
    # Generate a response using GPT-2 with adjusted parameters
    gpt2_inputs = gpt2_tokenizer.encode(combined_input, return_tensors='pt')
    gpt2_outputs = gpt2_model.generate(
        gpt2_inputs,
        max_length=150,
        num_return_sequences=1,
        temperature=0.5,
        top_p=0.9,
        repetition_penalty=1.2
    )
    generated_text = gpt2_tokenizer.decode(gpt2_outputs[0], skip_special_tokens=True)
    
    return generated_text

def chatbot(user_input, context=""):
    context_embedding = encode_text(context) if context else ""
    response = generate_response(user_input, context_embedding)
    return response

# Create the Gradio interface
iface = gr.Interface(
    fn=chatbot,
    inputs=[gr.Textbox(lines=2, placeholder="Enter your message here..."), gr.Textbox(lines=2, placeholder="Enter context here (optional)...")],
    outputs="text",
    title="Context-Aware Dynamic Response Chatbot",
    description="A chatbot using a bi-encoder model to understand the input context and GPT-2 to generate dynamic responses."
)

# Launch the interface
iface.launch()