aquibmoin's picture
Update app.py
684b0cb verified
raw
history blame
3.76 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModel
from openai import OpenAI
import os
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
# Load the NASA-specific bi-encoder model and tokenizer
bi_encoder_model_name = "nasa-impact/nasa-smd-ibm-st-v2"
bi_tokenizer = AutoTokenizer.from_pretrained(bi_encoder_model_name)
bi_model = AutoModel.from_pretrained(bi_encoder_model_name)
# Set up OpenAI client
api_key = os.getenv('OPENAI_API_KEY')
client = OpenAI(api_key=api_key)
# Define a system message to introduce Exos
system_message = "You are Exos, a helpful assistant specializing in Exoplanet research. Provide detailed and accurate responses related to Exoplanet research."
def encode_text(text):
inputs = bi_tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=128)
outputs = bi_model(**inputs)
return outputs.last_hidden_state.mean(dim=1).detach().numpy().flatten() # Ensure the output is 2D
def retrieve_relevant_context(user_input, context_texts):
user_embedding = encode_text(user_input).reshape(1, -1)
context_embeddings = np.array([encode_text(text) for text in context_texts])
context_embeddings = context_embeddings.reshape(len(context_embeddings), -1) # Flatten each embedding
similarities = cosine_similarity(user_embedding, context_embeddings).flatten()
most_relevant_idx = np.argmax(similarities)
return context_texts[most_relevant_idx]
def generate_response(user_input, relevant_context="", max_tokens=150, temperature=0.7, top_p=0.9, frequency_penalty=0.5, presence_penalty=0.0):
if relevant_context:
combined_input = f"Context: {relevant_context}\nQuestion: {user_input}\nAnswer:"
else:
combined_input = f"Question: {user_input}\nAnswer:"
response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": system_message},
{"role": "user", "content": combined_input}
],
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
presence_penalty=presence_penalty
)
return response.choices[0].message.content.strip()
def chatbot(user_input, context="", use_encoder=False, max_tokens=150, temperature=0.7, top_p=0.9, frequency_penalty=0.5, presence_penalty=0.0):
if use_encoder and context:
context_texts = context.split("\n")
relevant_context = retrieve_relevant_context(user_input, context_texts)
else:
relevant_context = ""
response = generate_response(user_input, relevant_context, max_tokens, temperature, top_p, frequency_penalty, presence_penalty)
return response
# Create the Gradio interface
iface = gr.Interface(
fn=chatbot,
inputs=[
gr.Textbox(lines=2, placeholder="Enter your message here...", label="Your Question"),
gr.Textbox(lines=5, placeholder="Enter context here, separated by new lines...", label="Context"),
gr.Checkbox(label="Use NASA SMD Bi-Encoder for Context"),
gr.Slider(50, 500, value=150, step=10, label="Max Tokens"),
gr.Slider(0.0, 1.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(0.0, 1.0, value=0.9, step=0.1, label="Top-p"),
gr.Slider(0.0, 1.0, value=0.5, step=0.1, label="Frequency Penalty"),
gr.Slider(0.0, 1.0, value=0.0, step=0.1, label="Presence Penalty")
],
outputs=gr.Textbox(label="Exos says..."),
title="Exos - Your Exoplanet Research Assistant",
description="Exos is a helpful assistant specializing in Exoplanet research. Provide context to get more refined and relevant responses.",
)
# Launch the interface
iface.launch(share=True)