Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,8 +2,8 @@ import gradio as gr
|
|
2 |
from transformers import AutoTokenizer, AutoModel, GPT2LMHeadModel, GPT2Tokenizer
|
3 |
import torch
|
4 |
|
5 |
-
# Load the bi-encoder model and tokenizer
|
6 |
-
bi_encoder_model_name = "
|
7 |
bi_tokenizer = AutoTokenizer.from_pretrained(bi_encoder_model_name)
|
8 |
bi_model = AutoModel.from_pretrained(bi_encoder_model_name)
|
9 |
|
@@ -19,8 +19,8 @@ def encode_text(text):
|
|
19 |
return outputs.last_hidden_state.mean(dim=1).detach().numpy()
|
20 |
|
21 |
def generate_response(user_input, context_embedding):
|
22 |
-
#
|
23 |
-
combined_input =
|
24 |
|
25 |
# Generate a response using GPT-2 with adjusted parameters
|
26 |
gpt2_inputs = gpt2_tokenizer.encode(combined_input, return_tensors='pt')
|
@@ -28,7 +28,7 @@ def generate_response(user_input, context_embedding):
|
|
28 |
gpt2_inputs,
|
29 |
max_length=150,
|
30 |
num_return_sequences=1,
|
31 |
-
temperature=0.
|
32 |
top_p=0.9,
|
33 |
repetition_penalty=1.2
|
34 |
)
|
@@ -47,7 +47,7 @@ iface = gr.Interface(
|
|
47 |
inputs=[gr.Textbox(lines=2, placeholder="Enter your message here..."), gr.Textbox(lines=2, placeholder="Enter context here (optional)...")],
|
48 |
outputs="text",
|
49 |
title="Context-Aware Dynamic Response Chatbot",
|
50 |
-
description="A chatbot using a bi-encoder model to understand the input context and GPT-2 to generate dynamic responses."
|
51 |
)
|
52 |
|
53 |
# Launch the interface
|
@@ -56,3 +56,4 @@ iface.launch()
|
|
56 |
|
57 |
|
58 |
|
|
|
|
2 |
from transformers import AutoTokenizer, AutoModel, GPT2LMHeadModel, GPT2Tokenizer
|
3 |
import torch
|
4 |
|
5 |
+
# Load the NASA-specific bi-encoder model and tokenizer
|
6 |
+
bi_encoder_model_name = "nasa-impact/nasa-smd-ibm-st-v2"
|
7 |
bi_tokenizer = AutoTokenizer.from_pretrained(bi_encoder_model_name)
|
8 |
bi_model = AutoModel.from_pretrained(bi_encoder_model_name)
|
9 |
|
|
|
19 |
return outputs.last_hidden_state.mean(dim=1).detach().numpy()
|
20 |
|
21 |
def generate_response(user_input, context_embedding):
|
22 |
+
# Create a structured prompt for GPT-2
|
23 |
+
combined_input = f"Question: {user_input}\nContext: {context_embedding}\nAnswer:"
|
24 |
|
25 |
# Generate a response using GPT-2 with adjusted parameters
|
26 |
gpt2_inputs = gpt2_tokenizer.encode(combined_input, return_tensors='pt')
|
|
|
28 |
gpt2_inputs,
|
29 |
max_length=150,
|
30 |
num_return_sequences=1,
|
31 |
+
temperature=0.7,
|
32 |
top_p=0.9,
|
33 |
repetition_penalty=1.2
|
34 |
)
|
|
|
47 |
inputs=[gr.Textbox(lines=2, placeholder="Enter your message here..."), gr.Textbox(lines=2, placeholder="Enter context here (optional)...")],
|
48 |
outputs="text",
|
49 |
title="Context-Aware Dynamic Response Chatbot",
|
50 |
+
description="A chatbot using a NASA-specific bi-encoder model to understand the input context and GPT-2 to generate dynamic responses."
|
51 |
)
|
52 |
|
53 |
# Launch the interface
|
|
|
56 |
|
57 |
|
58 |
|
59 |
+
|