import gradio as gr from transformers import AutoTokenizer, AutoModel import openai import os # Load the NASA-specific bi-encoder model and tokenizer bi_encoder_model_name = "nasa-impact/nasa-smd-ibm-st-v2" bi_tokenizer = AutoTokenizer.from_pretrained(bi_encoder_model_name) bi_model = AutoModel.from_pretrained(bi_encoder_model_name) # Set up OpenAI API key openai.api_key = os.getenv('OPENAI_API_KEY') def encode_text(text): inputs = bi_tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=128) outputs = bi_model(**inputs) # Ensure the output is 2D by averaging the last hidden state along the sequence dimension return outputs.last_hidden_state.mean(dim=1).detach().numpy().flatten() def generate_response(user_input, context_embedding): # Create a structured prompt for GPT-4 context_str = ' '.join(map(str, context_embedding)) # Convert context embedding to a string combined_input = f"Question: {user_input}\nContext: {context_str}\nAnswer:" # Generate a response using GPT-4 response = openai.ChatCompletion.create( model="gpt-4", # Use GPT-4 model messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": combined_input} ], max_tokens=150, temperature=0.5, top_p=0.9, frequency_penalty=0.5, presence_penalty=0.0 ) return response.choices[0].message['content'].strip() def chatbot(user_input, context=""): context_embedding = encode_text(context) if context else "" response = generate_response(user_input, context_embedding) return response # Create the Gradio interface iface = gr.Interface( fn=chatbot, inputs=[gr.Textbox(lines=2, placeholder="Enter your message here..."), gr.Textbox(lines=2, placeholder="Enter context here (optional)...")], outputs="text", title="Context-Aware Dynamic Response Chatbot", description="A chatbot using a NASA-specific bi-encoder model to understand the input context and GPT-4 to generate dynamic responses." ) # Launch the interface iface.launch()