File size: 14,930 Bytes
536372f
 
 
 
 
 
c7af9e1
 
 
 
645e61e
9ef9a98
536372f
 
 
 
 
 
 
 
 
 
c7af9e1
 
 
260e2b7
 
 
64e5e97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe00658
260e2b7
536372f
 
 
 
c7af9e1
536372f
 
 
 
c7af9e1
536372f
 
 
 
219ff73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5137e56
c7af9e1
5137e56
 
c7af9e1
5137e56
c7af9e1
5137e56
c7af9e1
87b29c9
 
5137e56
87b29c9
 
 
 
 
 
 
 
c7af9e1
87b29c9
c7af9e1
87b29c9
c7af9e1
645e61e
 
 
 
 
 
317197e
645e61e
 
 
 
 
 
 
 
 
 
 
c7af9e1
536372f
64e5e97
536372f
64e5e97
536372f
 
29720b6
536372f
 
 
 
 
 
 
 
 
 
c7af9e1
 
 
 
 
87b29c9
c7af9e1
 
 
536372f
 
260e2b7
ee80e0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7af9e1
 
 
 
 
 
 
 
 
 
 
9ef9a98
 
 
 
4d1254b
 
9ef9a98
4d1254b
9ef9a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d1254b
 
9ef9a98
 
4d1254b
 
 
 
 
 
 
9ef9a98
4d1254b
9ef9a98
4d1254b
 
9ef9a98
 
 
 
 
 
 
 
 
536372f
 
 
 
 
 
 
c7af9e1
 
 
 
 
 
 
 
645e61e
 
 
ee80e0c
 
 
 
9ef9a98
 
 
ee80e0c
 
c7af9e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ef9a98
c7af9e1
536372f
 
 
7cbeeaf
c7af9e1
536372f
29720b6
536372f
 
 
 
 
c7af9e1
7cbeeaf
c7af9e1
 
 
9ef9a98
 
c7af9e1
260e2b7
7cbeeaf
536372f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import gradio as gr
from transformers import AutoTokenizer, AutoModel
from openai import OpenAI
import os
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from docx import Document
import io
import tempfile
from astroquery.nasa_ads import ADS
import pyvo as vo
import pandas as pd

# Load the NASA-specific bi-encoder model and tokenizer
bi_encoder_model_name = "nasa-impact/nasa-smd-ibm-st-v2"
bi_tokenizer = AutoTokenizer.from_pretrained(bi_encoder_model_name)
bi_model = AutoModel.from_pretrained(bi_encoder_model_name)

# Set up OpenAI client
api_key = os.getenv('OPENAI_API_KEY')
client = OpenAI(api_key=api_key)

# Set up NASA ADS token
ADS.TOKEN = os.getenv('ADS_API_KEY')  # Ensure your ADS API key is stored in environment variables

# Define system message with instructions
system_message = """
You are ExosAI, a helpful assistant specializing in Exoplanet research. 
Given the following scientific context and user input, generate a table with five columns: 
Technical Requirements Table: Generate a table with the following columns:
    - Requirements: The specific observational requirements (e.g., UV observations, long wavelength observations).
    - Necessary: The necessary values or parameters (e.g., wavelength ranges, spatial resolution).
    - Desired: The desired values or parameters.
    - Justification: A scientific explanation of why these requirements are important.
    - Comments: Additional notes or remarks regarding each requirement.

    Example:
    | Requirements                     | Necessary                                | Desired                                  | Justification                                                                                                                                              | Comments                                                                                                         |
    |----------------------------------|------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
    | UV Observations                  | Wavelength: 1200–2100 Å, 2500–3300 Å     | Wavelength: 1200–3300 Å                  | Characterization of atomic and molecular emissions (H, C, O, S, etc.) from fluorescence and dissociative electron impact                                    | Needed for detecting H2O, CO, CO2, and other volatile molecules relevant for volatile delivery studies.         |
    | Infrared Observations            | Wavelength: 2.5–4.8 μm                   | Wavelength: 1.5–4.8 μm                   | Tracks water emissions and CO2 lines in icy bodies and small planetesimals                                                                                  | Also allows detection of 3 μm absorption feature in icy bodies.                                                |

    Ensure the response is structured clearly and the technical requirements table follows this format.

"""

def encode_text(text):
    inputs = bi_tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=128)
    outputs = bi_model(**inputs)
    return outputs.last_hidden_state.mean(dim=1).detach().numpy().flatten()

def retrieve_relevant_context(user_input, context_texts):
    user_embedding = encode_text(user_input).reshape(1, -1)
    context_embeddings = np.array([encode_text(text) for text in context_texts])
    context_embeddings = context_embeddings.reshape(len(context_embeddings), -1)
    similarities = cosine_similarity(user_embedding, context_embeddings).flatten()
    most_relevant_idx = np.argmax(similarities)
    return context_texts[most_relevant_idx]

def extract_keywords_with_gpt(user_input, max_tokens=100, temperature=0.3):
    # Define a prompt to ask GPT-4 to extract keywords and important terms
    keyword_prompt = f"Extract the most important keywords, scientific concepts, and parameters from the following user query:\n\n{user_input}"
    
    # Call GPT-4 to extract keywords based on the user prompt
    response = client.chat.completions.create(
        model="gpt-4",
        messages=[
            {"role": "system", "content": "You are an expert in identifying key scientific terms and concepts."},
            {"role": "user", "content": keyword_prompt}
        ],
        max_tokens=max_tokens,
        temperature=temperature
    )
    
    # Extract the content from GPT-4's reply
    extracted_keywords = response.choices[0].message.content.strip()
    
    return extracted_keywords

def fetch_nasa_ads_references(prompt):
    try:
        # Use the entire prompt for the query
        simplified_query = prompt

        # Query NASA ADS for relevant papers
        papers = ADS.query_simple(simplified_query)
        
        if not papers or len(papers) == 0:
            return [("No results found", "N/A", "N/A")]
        
        # Include authors in the references
        references = [
            (
                paper['title'][0], 
                ", ".join(paper['author'][:3]) + (" et al." if len(paper['author']) > 3 else ""), 
                paper['bibcode']
            ) 
            for paper in papers[:5]  # Limit to 5 references
        ]
        return references
    
    except Exception as e:
        return [("Error fetching references", str(e), "N/A")]

def fetch_exoplanet_data():
    # Connect to NASA Exoplanet Archive TAP Service
    tap_service = vo.dal.TAPService("https://exoplanetarchive.ipac.caltech.edu/TAP")

    # Query to fetch all columns from the pscomppars table
    ex_query = """
        SELECT TOP 10 pl_name, hostname, sy_snum, sy_pnum, discoverymethod, disc_year, disc_facility, pl_controv_flag, pl_orbper, pl_orbsmax, pl_rade, pl_bmasse, pl_orbeccen, pl_eqt, st_spectype, st_teff, st_rad, st_mass, ra, dec, sy_vmag
        FROM pscomppars
    """
    # Execute the query
    qresult = tap_service.search(ex_query)

    # Convert to a Pandas DataFrame
    ptable = qresult.to_table()
    exoplanet_data = ptable.to_pandas()

    return exoplanet_data

def generate_response(user_input, relevant_context="", references=[], max_tokens=150, temperature=0.7, top_p=0.9, frequency_penalty=0.5, presence_penalty=0.0):
    if relevant_context:
        combined_input = f"Scientific Context: {relevant_context}\nUser Input: {user_input}\nPlease generate a table with the format: | Requirements | Necessary | Desired | Justification | Comments |"
    else:
        combined_input = f"User Input: {user_input}\nPlease generate a table with the format: | Requirements | Necessary | Desired | Justification | Comments |"
    
    response = client.chat.completions.create(
        model="gpt-4-turbo",
        messages=[
            {"role": "system", "content": system_message},
            {"role": "user", "content": combined_input}
        ],
        max_tokens=max_tokens,
        temperature=temperature,
        top_p=top_p,
        frequency_penalty=frequency_penalty,
        presence_penalty=presence_penalty
    )
    
    # Append references to the response
    if references:
        response_content = response.choices[0].message.content.strip()
        references_text = "\n\nADS References:\n" + "\n".join(
            [f"- {title} by {authors} (Bibcode: {bibcode})" for title, authors, bibcode in references]
        )
        return f"{response_content}\n{references_text}"
    
    return response.choices[0].message.content.strip()

def generate_data_insights(user_input, exoplanet_data, max_tokens=500, temperature=0.3):
    """
    Generate insights by passing the user's input along with the exoplanet data to GPT-4.
    """
    # Convert the dataframe to a readable format for GPT (e.g., CSV-style text)
    data_as_text = exoplanet_data.to_csv(index=False)  # CSV-style for better readability

    # Create a prompt with the user query and the data sample
    insights_prompt = (
        f"Analyze the following user query and provide relevant insights based on the provided exoplanet data.\n\n"
        f"User Query: {user_input}\n\n"
        f"Exoplanet Data:\n{data_as_text}\n\n"
        f"Please provide insights that are relevant to the user's query."
    )
    
    # Call GPT-4 to generate insights based on the data and user input
    response = client.chat.completions.create(
        model="gpt-4",
        messages=[
            {"role": "system", "content": "You are an expert in analyzing astronomical data and generating insights."},
            {"role": "user", "content": insights_prompt}
        ],
        max_tokens=max_tokens,
        temperature=temperature
    )
    
    # Extract and return GPT-4's insights
    data_insights = response.choices[0].message.content.strip()
    return data_insights


def export_to_word(response_content):
    doc = Document()
    doc.add_heading('AI Generated SCDD', 0)
    for line in response_content.split('\n'):
        doc.add_paragraph(line)
    
    temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".docx")
    doc.save(temp_file.name)
    
    return temp_file.name

def extract_table_from_response(gpt_response):
    # Split the response into lines
    lines = gpt_response.strip().split("\n")
    
    # Find where the table starts and ends (based on the presence of pipes `|` and at least 3 columns)
    table_lines = [line for line in lines if '|' in line and len(line.split('|')) > 3]
    
    # If no table is found, return None or an empty string
    if not table_lines:
        return None
    
    # Find the first and last index of the table lines
    first_table_index = lines.index(table_lines[0])
    last_table_index = lines.index(table_lines[-1])
    
    # Extract only the table part
    table_text = lines[first_table_index:last_table_index + 1]
    
    return table_text

def gpt_response_to_dataframe(gpt_response):
    # Extract the table text from the GPT response
    table_lines = extract_table_from_response(gpt_response)
    
    # If no table found, return an empty DataFrame
    if table_lines is None or len(table_lines) == 0:
        return pd.DataFrame()

    # Find the header and row separator (assume it's a line with dashes like |---|)
    try:
        # The separator line (contains dashes separating headers and rows)
        sep_line_index = next(i for i, line in enumerate(table_lines) if set(line.strip()) == {'|', '-'})
    except StopIteration:
        # If no separator line is found, return an empty DataFrame
        return pd.DataFrame()

    # Extract headers (the line before the separator) and rows (lines after the separator)
    headers = [h.strip() for h in table_lines[sep_line_index - 1].split('|')[1:-1]]
    
    # Extract rows (each line after the separator)
    rows = [
        [cell.strip() for cell in row.split('|')[1:-1]]
        for row in table_lines[sep_line_index + 1:]
    ]

    # Create DataFrame
    df = pd.DataFrame(rows, columns=headers)
    return df
    
def chatbot(user_input, context="", use_encoder=False, max_tokens=150, temperature=0.7, top_p=0.9, frequency_penalty=0.5, presence_penalty=0.0):
    if use_encoder and context:
        context_texts = context.split("\n")
        relevant_context = retrieve_relevant_context(user_input, context_texts)
    else:
        relevant_context = ""

    # Fetch NASA ADS references using the full prompt
    references = fetch_nasa_ads_references(user_input)

    # Generate response from GPT-4
    response = generate_response(user_input, relevant_context, references, max_tokens, temperature, top_p, frequency_penalty, presence_penalty)

    # Export the response to a Word document
    word_doc_path = export_to_word(response)

    # Fetch exoplanet data
    exoplanet_data = fetch_exoplanet_data()

    # Generate insights based on the user query and exoplanet data
    data_insights = generate_data_insights(user_input, exoplanet_data)

    # Extract and convert the table from the GPT-4 response into a DataFrame
    extracted_table_df = gpt_response_to_dataframe(response)

    # Combine the response and the data insights
    full_response = f"{response}\n\nInsights from Existing Data: {data_insights}"
    
    # Embed Miro iframe
    iframe_html = """
    <iframe width="768" height="432" src="https://miro.com/app/live-embed/uXjVKuVTcF8=/?moveToViewport=-331,-462,5434,3063&embedId=710273023721" frameborder="0" scrolling="no" allow="fullscreen; clipboard-read; clipboard-write" allowfullscreen></iframe>
    """
    
    mapify_button_html = """
    <style>
        .mapify-button {
            background: linear-gradient(135deg, #1E90FF 0%, #87CEFA 100%);
            border: none;
            color: white;
            padding: 15px 35px;
            text-align: center;
            text-decoration: none;
            display: inline-block;
            font-size: 18px;
            font-weight: bold;
            margin: 20px 2px;
            cursor: pointer;
            border-radius: 25px;
            transition: all 0.3s ease;
            box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2);
        }
        .mapify-button:hover {
            background: linear-gradient(135deg, #4682B4 0%, #1E90FF 100%);
            box-shadow: 0 6px 20px rgba(0, 0, 0, 0.3);
            transform: scale(1.05);
        }
    </style>
    <a href="https://mapify.so/app/new" target="_blank">
        <button class="mapify-button">Create Mind Map on Mapify</button>
    </a>
    """
    return full_response, iframe_html, mapify_button_html, word_doc_path, exoplanet_data, extracted_table_df

iface = gr.Interface(
    fn=chatbot,
    inputs=[
        gr.Textbox(lines=2, placeholder="Enter your Science Goal here...", label="Prompt ExosAI"),
        gr.Textbox(lines=5, placeholder="Enter some context here...", label="Context"),
        gr.Checkbox(label="Use NASA SMD Bi-Encoder for Context"),
        gr.Slider(50, 1000, value=150, step=10, label="Max Tokens"),
        gr.Slider(0.0, 1.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(0.0, 1.0, value=0.9, step=0.1, label="Top-p"),
        gr.Slider(0.0, 1.0, value=0.5, step=0.1, label="Frequency Penalty"),
        gr.Slider(0.0, 1.0, value=0.0, step=0.1, label="Presence Penalty")
    ],
    outputs=[
        gr.Textbox(label="ExosAI finds..."),
        gr.HTML(label="Miro"),
        gr.HTML(label="Generate Mind Map on Mapify"),
        gr.File(label="Download SCDD", type="filepath"),
        gr.Dataframe(label="Exoplanet Data Table"),
        gr.Dataframe(label="Extracted Table from GPT-4 Response")
    ],
    title="ExosAI - NASA SMD SCDD AI Assistant [version-0.5a]",
    description="ExosAI is an AI-powered assistant for generating and visualising HWO Science Cases",
)

iface.launch(share=True)