File size: 18,368 Bytes
536372f
 
 
 
 
 
c7af9e1
cb31dc6
 
 
 
c7af9e1
 
 
645e61e
9ef9a98
536372f
 
 
 
 
 
 
 
 
 
c7af9e1
 
 
260e2b7
 
359bfc7
 
 
 
 
 
 
 
 
 
 
 
 
 
64e5e97
 
 
 
 
 
 
 
 
 
 
 
260e2b7
536372f
 
 
 
c7af9e1
536372f
 
 
 
c7af9e1
536372f
 
 
 
219ff73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5137e56
c7af9e1
5137e56
 
c7af9e1
5137e56
c7af9e1
5137e56
c7af9e1
87b29c9
 
5137e56
87b29c9
 
 
 
 
 
 
 
c7af9e1
87b29c9
c7af9e1
87b29c9
c7af9e1
645e61e
 
 
 
 
 
317197e
645e61e
 
 
 
 
 
 
 
 
 
 
c7af9e1
536372f
359bfc7
536372f
359bfc7
536372f
 
29720b6
536372f
 
 
 
 
 
 
 
 
 
c7af9e1
 
 
 
 
87b29c9
c7af9e1
 
 
536372f
 
260e2b7
ee80e0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e86985c
c7af9e1
cb31dc6
a18637e
c7af9e1
cb31dc6
e86985c
 
 
 
 
 
 
 
f5f2b08
cb31dc6
c7af9e1
cb31dc6
 
f5f2b08
a18637e
cb31dc6
f5f2b08
 
 
 
 
cb31dc6
f5f2b08
cb31dc6
f5f2b08
cb31dc6
 
 
 
 
 
 
 
f5f2b08
 
 
 
 
 
 
0136c25
 
f5f2b08
0136c25
 
 
f5f2b08
 
a18637e
 
 
cb31dc6
c7af9e1
 
 
 
 
9ef9a98
 
 
 
4d1254b
 
9ef9a98
4d1254b
9ef9a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d1254b
 
9ef9a98
 
4d1254b
 
 
 
 
 
 
9ef9a98
4d1254b
9ef9a98
4d1254b
 
9ef9a98
 
 
 
 
 
 
 
 
536372f
 
 
 
 
 
 
c7af9e1
 
 
 
 
 
 
e86985c
645e61e
 
 
ee80e0c
 
 
 
9ef9a98
 
 
ee80e0c
 
c7af9e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cca7bae
c7af9e1
536372f
 
 
0136c25
 
536372f
359bfc7
536372f
 
 
 
 
c7af9e1
0d48bc0
 
 
 
 
 
c7af9e1
a18637e
7cbeeaf
536372f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import gradio as gr
from transformers import AutoTokenizer, AutoModel
from openai import OpenAI
import os
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from docx import Document
from docx.shared import Pt
from docx.enum.text import WD_PARAGRAPH_ALIGNMENT
from docx.oxml.ns import nsdecls
from docx.oxml import parse_xml
import io
import tempfile
from astroquery.nasa_ads import ADS
import pyvo as vo
import pandas as pd

# Load the NASA-specific bi-encoder model and tokenizer
bi_encoder_model_name = "nasa-impact/nasa-smd-ibm-st-v2"
bi_tokenizer = AutoTokenizer.from_pretrained(bi_encoder_model_name)
bi_model = AutoModel.from_pretrained(bi_encoder_model_name)

# Set up OpenAI client
api_key = os.getenv('OPENAI_API_KEY')
client = OpenAI(api_key=api_key)

# Set up NASA ADS token
ADS.TOKEN = os.getenv('ADS_API_KEY')  # Ensure your ADS API key is stored in environment variables

# Define system message with instructions
system_message = """
You are ExosAI, a helpful assistant specializing in Exoplanet and Astrophysics research.

Generate a detailed structured response based on the following science context and user input, including the necessary observables, physical parameters, and technical requirements for observations. The response should include the following sections:

    Science Objectives: Describe key scientific study objectives related to the science context and user input.

    Physical Parameters: Outline the physical parameters related to the science context and user input.

    Observables: Specify the observables related to the science context and user input.

    Description of Desired Observations: Detail the types of observations related to the science context and user input.

    Technical Requirements Table: Generate a table with the following columns:
    - Requirements: The specific observational requirements (e.g., UV observations, Optical observations or Infrared observations).
    - Necessary: The necessary values or parameters (e.g., wavelength ranges, spatial resolution).
    - Desired: The desired values or parameters.
    - Justification: A scientific explanation of why these requirements are important.
    - Comments: Additional notes or remarks regarding each requirement.

    Example:
    | Requirements                     | Necessary                                | Desired                                  | Justification                                                                                                                                              | Comments                                                                                                         |
    |----------------------------------|------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
    | UV Observations                  | Wavelength: 1200–2100 Å, 2500–3300 Å     | Wavelength: 1200–3300 Å                  | Characterization of atomic and molecular emissions (H, C, O, S, etc.) from fluorescence and dissociative electron impact                                    | Needed for detecting H2O, CO, CO2, and other volatile molecules relevant for volatile delivery studies.         |
    | Infrared Observations            | Wavelength: 2.5–4.8 μm                   | Wavelength: 1.5–4.8 μm                   | Tracks water emissions and CO2 lines in icy bodies and small planetesimals                                                                                  | Also allows detection of 3 μm absorption feature in icy bodies.                                                |

    Ensure the response is structured clearly and the technical requirements table follows this format.
"""

def encode_text(text):
    inputs = bi_tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=128)
    outputs = bi_model(**inputs)
    return outputs.last_hidden_state.mean(dim=1).detach().numpy().flatten()

def retrieve_relevant_context(user_input, context_texts):
    user_embedding = encode_text(user_input).reshape(1, -1)
    context_embeddings = np.array([encode_text(text) for text in context_texts])
    context_embeddings = context_embeddings.reshape(len(context_embeddings), -1)
    similarities = cosine_similarity(user_embedding, context_embeddings).flatten()
    most_relevant_idx = np.argmax(similarities)
    return context_texts[most_relevant_idx]

def extract_keywords_with_gpt(user_input, max_tokens=100, temperature=0.3):
    # Define a prompt to ask GPT-4 to extract keywords and important terms
    keyword_prompt = f"Extract the most important keywords, scientific concepts, and parameters from the following user query:\n\n{user_input}"
    
    # Call GPT-4 to extract keywords based on the user prompt
    response = client.chat.completions.create(
        model="gpt-4",
        messages=[
            {"role": "system", "content": "You are an expert in identifying key scientific terms and concepts."},
            {"role": "user", "content": keyword_prompt}
        ],
        max_tokens=max_tokens,
        temperature=temperature
    )
    
    # Extract the content from GPT-4's reply
    extracted_keywords = response.choices[0].message.content.strip()
    
    return extracted_keywords

def fetch_nasa_ads_references(prompt):
    try:
        # Use the entire prompt for the query
        simplified_query = prompt

        # Query NASA ADS for relevant papers
        papers = ADS.query_simple(simplified_query)
        
        if not papers or len(papers) == 0:
            return [("No results found", "N/A", "N/A")]
        
        # Include authors in the references
        references = [
            (
                paper['title'][0], 
                ", ".join(paper['author'][:3]) + (" et al." if len(paper['author']) > 3 else ""), 
                paper['bibcode']
            ) 
            for paper in papers[:5]  # Limit to 5 references
        ]
        return references
    
    except Exception as e:
        return [("Error fetching references", str(e), "N/A")]

def fetch_exoplanet_data():
    # Connect to NASA Exoplanet Archive TAP Service
    tap_service = vo.dal.TAPService("https://exoplanetarchive.ipac.caltech.edu/TAP")

    # Query to fetch all columns from the pscomppars table
    ex_query = """
        SELECT TOP 10 pl_name, hostname, sy_snum, sy_pnum, discoverymethod, disc_year, disc_facility, pl_controv_flag, pl_orbper, pl_orbsmax, pl_rade, pl_bmasse, pl_orbeccen, pl_eqt, st_spectype, st_teff, st_rad, st_mass, ra, dec, sy_vmag
        FROM pscomppars
    """
    # Execute the query
    qresult = tap_service.search(ex_query)

    # Convert to a Pandas DataFrame
    ptable = qresult.to_table()
    exoplanet_data = ptable.to_pandas()

    return exoplanet_data

def generate_response(user_input, relevant_context="", references=[], max_tokens=150, temperature=0.7, top_p=0.9, frequency_penalty=0.5, presence_penalty=0.0):
    if relevant_context:
        combined_input = f"Scientific Context: {relevant_context}\nUser Input: {user_input}\nPlease generate a detailed structured response as per the defined sections and table format."
    else:
        combined_input = f"User Input: {user_input}\nPlease generate a detailed structured response as per the defined sections and table format."
    
    response = client.chat.completions.create(
        model="gpt-4-turbo",
        messages=[
            {"role": "system", "content": system_message},
            {"role": "user", "content": combined_input}
        ],
        max_tokens=max_tokens,
        temperature=temperature,
        top_p=top_p,
        frequency_penalty=frequency_penalty,
        presence_penalty=presence_penalty
    )
    
    # Append references to the response
    if references:
        response_content = response.choices[0].message.content.strip()
        references_text = "\n\nADS References:\n" + "\n".join(
            [f"- {title} by {authors} (Bibcode: {bibcode})" for title, authors, bibcode in references]
        )
        return f"{response_content}\n{references_text}"
    
    return response.choices[0].message.content.strip()

def generate_data_insights(user_input, exoplanet_data, max_tokens=500, temperature=0.3):
    """
    Generate insights by passing the user's input along with the exoplanet data to GPT-4.
    """
    # Convert the dataframe to a readable format for GPT (e.g., CSV-style text)
    data_as_text = exoplanet_data.to_csv(index=False)  # CSV-style for better readability

    # Create a prompt with the user query and the data sample
    insights_prompt = (
        f"Analyze the following user query and provide relevant insights based on the provided exoplanet data.\n\n"
        f"User Query: {user_input}\n\n"
        f"Exoplanet Data:\n{data_as_text}\n\n"
        f"Please provide insights that are relevant to the user's query."
    )
    
    # Call GPT-4 to generate insights based on the data and user input
    response = client.chat.completions.create(
        model="gpt-4",
        messages=[
            {"role": "system", "content": "You are an expert in analyzing astronomical data and generating insights."},
            {"role": "user", "content": insights_prompt}
        ],
        max_tokens=max_tokens,
        temperature=temperature
    )
    
    # Extract and return GPT-4's insights
    data_insights = response.choices[0].message.content.strip()
    return data_insights


def export_to_word(response_content, subdomain_definition, science_goal):
    doc = Document()
    
    # Add a title (optional, you can remove this if not needed)
    doc.add_heading('AI Generated SCDD', 0)

    # Insert the Subdomain Definition at the top
    doc.add_heading('Subdomain Definition:', level=1)
    doc.add_paragraph(subdomain_definition)

    # Insert the Science Goal at the top
    doc.add_heading('Science Goal:', level=1)
    doc.add_paragraph(science_goal)

    # Split the response into sections based on ### headings
    sections = response_content.split('### ')
    
    for section in sections:
        if section.strip():
            # Handle the "Technical Requirements Table" separately with proper formatting
            if section.startswith('Technical Requirements Table'):
                doc.add_heading('Technical Requirements Table', level=1)
                
                # Extract table lines
                table_lines = section.split('\n')[2:]  # Start after the heading line
                
                # Check if it's an actual table (split lines by '|' symbol)
                table_data = [line.split('|')[1:-1] for line in table_lines if '|' in line]
                
                if table_data:
                    # Add table to the document
                    table = doc.add_table(rows=len(table_data), cols=len(table_data[0]))
                    table.style = 'Table Grid'
                    for i, row in enumerate(table_data):
                        for j, cell_text in enumerate(row):
                            cell = table.cell(i, j)
                            cell.text = cell_text.strip()
                            # Apply text wrapping for each cell
                            cell._element.get_or_add_tcPr().append(parse_xml(r'<w:tcW w:w="2500" w:type="pct" ' + nsdecls('w') + '/>'))
                
                # Process any paragraphs that follow the table
                paragraph_after_table = '\n'.join([line for line in table_lines if '|' not in line and line.strip()])
                if paragraph_after_table:
                    doc.add_paragraph(paragraph_after_table.strip())
            
            # Handle the "ADS References" section
            elif section.startswith('ADS References'):
                doc.add_heading('ADS References', level=1)
                references = section.split('\n')[1:]  # Skip the heading
                for reference in references:
                    if reference.strip():
                        doc.add_paragraph(reference.strip())
            
            # Add all other sections as plain paragraphs
            else:
                doc.add_paragraph(section.strip())
    
    # Save the document to a temporary file
    temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".docx")
    doc.save(temp_file.name)
    
    return temp_file.name

def extract_table_from_response(gpt_response):
    # Split the response into lines
    lines = gpt_response.strip().split("\n")
    
    # Find where the table starts and ends (based on the presence of pipes `|` and at least 3 columns)
    table_lines = [line for line in lines if '|' in line and len(line.split('|')) > 3]
    
    # If no table is found, return None or an empty string
    if not table_lines:
        return None
    
    # Find the first and last index of the table lines
    first_table_index = lines.index(table_lines[0])
    last_table_index = lines.index(table_lines[-1])
    
    # Extract only the table part
    table_text = lines[first_table_index:last_table_index + 1]
    
    return table_text

def gpt_response_to_dataframe(gpt_response):
    # Extract the table text from the GPT response
    table_lines = extract_table_from_response(gpt_response)
    
    # If no table found, return an empty DataFrame
    if table_lines is None or len(table_lines) == 0:
        return pd.DataFrame()

    # Find the header and row separator (assume it's a line with dashes like |---|)
    try:
        # The separator line (contains dashes separating headers and rows)
        sep_line_index = next(i for i, line in enumerate(table_lines) if set(line.strip()) == {'|', '-'})
    except StopIteration:
        # If no separator line is found, return an empty DataFrame
        return pd.DataFrame()

    # Extract headers (the line before the separator) and rows (lines after the separator)
    headers = [h.strip() for h in table_lines[sep_line_index - 1].split('|')[1:-1]]
    
    # Extract rows (each line after the separator)
    rows = [
        [cell.strip() for cell in row.split('|')[1:-1]]
        for row in table_lines[sep_line_index + 1:]
    ]

    # Create DataFrame
    df = pd.DataFrame(rows, columns=headers)
    return df
    
def chatbot(user_input, context="", use_encoder=False, max_tokens=150, temperature=0.7, top_p=0.9, frequency_penalty=0.5, presence_penalty=0.0):
    if use_encoder and context:
        context_texts = context.split("\n")
        relevant_context = retrieve_relevant_context(user_input, context_texts)
    else:
        relevant_context = ""

    # Fetch NASA ADS references using the full prompt
    references = fetch_nasa_ads_references(user_input)

    # Generate response from GPT-4
    response = generate_response(user_input, relevant_context, references, max_tokens, temperature, top_p, frequency_penalty, presence_penalty)

    # Export the response to a Word document
    word_doc_path = export_to_word(response, user_input, context)

    # Fetch exoplanet data
    exoplanet_data = fetch_exoplanet_data()

    # Generate insights based on the user query and exoplanet data
    data_insights = generate_data_insights(user_input, exoplanet_data)

    # Extract and convert the table from the GPT-4 response into a DataFrame
    extracted_table_df = gpt_response_to_dataframe(response)

    # Combine the response and the data insights
    full_response = f"{response}\n\nInsights from Existing Data: {data_insights}"
    
    # Embed Miro iframe
    iframe_html = """
    <iframe width="768" height="432" src="https://miro.com/app/live-embed/uXjVKuVTcF8=/?moveToViewport=-331,-462,5434,3063&embedId=710273023721" frameborder="0" scrolling="no" allow="fullscreen; clipboard-read; clipboard-write" allowfullscreen></iframe>
    """
    
    mapify_button_html = """
    <style>
        .mapify-button {
            background: linear-gradient(135deg, #1E90FF 0%, #87CEFA 100%);
            border: none;
            color: white;
            padding: 15px 35px;
            text-align: center;
            text-decoration: none;
            display: inline-block;
            font-size: 18px;
            font-weight: bold;
            margin: 20px 2px;
            cursor: pointer;
            border-radius: 25px;
            transition: all 0.3s ease;
            box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2);
        }
        .mapify-button:hover {
            background: linear-gradient(135deg, #4682B4 0%, #1E90FF 100%);
            box-shadow: 0 6px 20px rgba(0, 0, 0, 0.3);
            transform: scale(1.05);
        }
    </style>
    <a href="https://mapify.so/app/new" target="_blank">
        <button class="mapify-button">Create Mind Map on Mapify</button>
    </a>
    """
    return full_response, extracted_table_df, word_doc_path, exoplanet_data, iframe_html, mapify_button_html

iface = gr.Interface(
    fn=chatbot,
    inputs=[
        gr.Textbox(lines=2, placeholder="Define your Subdomain...", label="Subdomain Definition"),
        gr.Textbox(lines=5, placeholder="Enter your Science Goal...", label="Science Goal"),
        gr.Checkbox(label="Use NASA SMD Bi-Encoder for Context"),
        gr.Slider(50, 2000, value=150, step=10, label="Max Tokens"),
        gr.Slider(0.0, 1.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(0.0, 1.0, value=0.9, step=0.1, label="Top-p"),
        gr.Slider(0.0, 1.0, value=0.5, step=0.1, label="Frequency Penalty"),
        gr.Slider(0.0, 1.0, value=0.0, step=0.1, label="Presence Penalty")
    ],
    outputs=[
        gr.Textbox(label="ExosAI finds..."),                           
        gr.Dataframe(label="SC Requirements Table"),      
        gr.File(label="Download SCDD", type="filepath"),                
        gr.Dataframe(label="Exoplanet Data Table"),                     
        gr.HTML(label="Miro"),                                          
        gr.HTML(label="Generate Mind Map on Mapify") 
    ],
    title="ExosAI - NASA SMD SCDD AI Assistant [version-0.8a]",
    description="ExosAI is an AI-powered assistant for generating and visualising HWO Science Cases",
)

iface.launch(share=True)