File size: 6,399 Bytes
1aef621
 
 
 
 
e927cd3
1aef621
27180cc
 
 
 
3bcf6d8
1aef621
3bcf6d8
1aef621
 
 
e927cd3
 
1aef621
e927cd3
 
 
1aef621
 
 
 
46bf33d
 
 
 
 
 
 
 
 
 
 
 
 
e927cd3
 
27180cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46bf33d
3bcf6d8
46bf33d
 
 
 
 
e927cd3
89f2c8d
46bf33d
 
 
 
 
 
 
 
 
 
 
27180cc
46bf33d
 
 
27180cc
 
 
46bf33d
e927cd3
27180cc
46bf33d
3bcf6d8
46bf33d
1aef621
3bcf6d8
20c4df5
960d9a4
 
 
 
 
 
3bcf6d8
 
 
20c4df5
960d9a4
3bcf6d8
89f2c8d
960d9a4
 
 
 
 
3bcf6d8
960d9a4
89f2c8d
27180cc
 
89f2c8d
 
 
 
03c0141
960d9a4
 
 
 
3bcf6d8
 
 
 
 
 
 
aac3f56
 
 
 
03c0141
aac3f56
 
 
3bcf6d8
aac3f56
 
 
 
 
 
 
03c0141
3bcf6d8
 
 
 
 
1aef621
 
 
3bcf6d8
960d9a4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import gradio as gr
import asyncio
import edge_tts
import os
from huggingface_hub import InferenceClient
import requests
import tempfile
import logging

# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# Get the Hugging Face token from environment variable
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
    raise ValueError("HF_TOKEN environment variable is not set")

# Initialize the Hugging Face Inference Client for chat completion
chat_client = InferenceClient("mistralai/Mistral-Nemo-Instruct-2407", token=hf_token)

# Whisper API settings
WHISPER_API_URL = "https://api-inference.huggingface.co/models/openai/whisper-large-v3-turbo"
headers = {"Authorization": f"Bearer {hf_token}"}

# Initialize an empty chat history
chat_history = []

async def text_to_speech_stream(text):
    """Convert text to speech using edge_tts and return the audio file path."""
    communicate = edge_tts.Communicate(text, "en-US-AvaMultilingualNeural")
    audio_data = b""

    async for chunk in communicate.stream():
        if chunk["type"] == "audio":
            audio_data += chunk["data"]

    with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file:
        temp_file.write(audio_data)
        return temp_file.name

def whisper_speech_to_text(audio_path):
    """Convert speech to text using Hugging Face Whisper API."""
    if audio_path is None:
        logging.error("Error: No audio file provided")
        return ""
    
    if not os.path.exists(audio_path):
        logging.error(f"Error: Audio file not found at {audio_path}")
        return ""
    
    try:
        with open(audio_path, "rb") as audio_file:
            data = audio_file.read()
        response = requests.post(WHISPER_API_URL, headers=headers, data=data)
        response.raise_for_status()  # Raise an exception for bad status codes
        result = response.json()
        transcribed_text = result.get("text", "")
        logging.info(f"Transcribed text: {transcribed_text}")
        return transcribed_text
    except requests.exceptions.RequestException as e:
        logging.error(f"Error during API request: {e}")
        return ""
    except Exception as e:
        logging.error(f"Unexpected error in whisper_speech_to_text: {e}")
        return ""

async def chat_with_ai(message):
    global chat_history
    
    chat_history.append({"role": "user", "content": message})
    
    try:
        response = chat_client.chat_completion(
            messages=[{"role": "system", "content": "You are a helpful voice assistant. Provide concise and clear responses to user queries."}] + chat_history,
            max_tokens=800,
            temperature=0.7
        )
        
        response_text = response.choices[0].message['content']
        chat_history.append({"role": "assistant", "content": response_text})
        
        audio_path = await text_to_speech_stream(response_text)
        
        return response_text, audio_path
    except Exception as e:
        logging.error(f"Error in chat_with_ai: {e}")
        return str(e), None

def transcribe_and_chat(audio):
    if audio is None:
        return "Sorry, no audio was provided. Please try recording again.", None
    
    text = whisper_speech_to_text(audio)
    if not text:
        return "Sorry, I couldn't understand the audio or there was an error in transcription. Please try again.", None
    
    response, audio_path = asyncio.run(chat_with_ai(text))
    return response, audio_path

def create_demo():
    with gr.Blocks() as demo:
        gr.Markdown(
            """
            # πŸ—£οΈ AI Voice Assistant
            Welcome to your personal voice assistant! Simply record your voice, and I will respond with both text and speech. Powered by advanced AI models.
            """
        )

        with gr.Row():
            with gr.Column(scale=1):
                audio_input = gr.Audio(type="filepath", label="🎀 Record your voice", elem_id="audio-input")
                clear_button = gr.Button("Clear", variant="secondary", elem_id="clear-button")

            with gr.Column(scale=1):
                chat_output = gr.Textbox(label="πŸ’¬ AI Response", elem_id="chat-output", lines=5, interactive=False)
                audio_output = gr.Audio(label="πŸ”Š AI Voice Response", autoplay=True, elem_id="audio-output")

        # Add some spacing and a divider
        gr.Markdown("---")

        # Processing the audio input
        def process_audio(audio):
            logging.info(f"Received audio: {audio}")
            if audio is None:
                return "No audio detected. Please try recording again.", None, None
            response, audio_path = transcribe_and_chat(audio)
            logging.info(f"Response: {response}, Audio path: {audio_path}")
            return response, audio_path, None  # Return None to clear the audio input

        audio_input.change(process_audio, inputs=[audio_input], outputs=[chat_output, audio_output, audio_input])
        clear_button.click(lambda: (None, None, None), None, [chat_output, audio_output, audio_input])

        # JavaScript to handle autoplay and automatic submission
        demo.load(None, js="""
            function() {
                document.querySelector("audio").addEventListener("stop", function() {
                    setTimeout(function() {
                        document.querySelector('button[title="Submit"]').click();
                    }, 500);
                });
                
                function playAssistantAudio() {
                    var audioElements = document.querySelectorAll('audio');
                    if (audioElements.length > 1) {
                        var assistantAudio = audioElements[1];
                        if (assistantAudio) {
                            assistantAudio.play();
                        }
                    }
                }

                document.addEventListener('gradioAudioLoaded', function(event) {
                    playAssistantAudio();
                });

                document.addEventListener('gradioUpdated', function(event) {
                    setTimeout(playAssistantAudio, 100);
                });
            }
        """)

    return demo

# Launch the Gradio app
if __name__ == "__main__":
    demo = create_demo()
    demo.launch(server_name="0.0.0.0", server_port=7860)