File size: 22,663 Bytes
246d201 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 |
import asyncio
import json
import os
from collections import Counter
from typing import Any
import pandas as pd
from commit0.harness.constants import SPLIT
from datasets import load_dataset
import openhands.agenthub
from evaluation.utils.shared import (
EvalException,
EvalMetadata,
EvalOutput,
assert_and_raise,
codeact_user_response,
make_metadata,
prepare_dataset,
reset_logger_for_multiprocessing,
run_evaluation,
update_llm_config_for_completions_logging,
)
from openhands.controller.state.state import State
from openhands.core.config import (
AgentConfig,
AppConfig,
SandboxConfig,
get_llm_config_arg,
get_parser,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.events.action import CmdRunAction, MessageAction
from openhands.events.observation import CmdOutputObservation, ErrorObservation
from openhands.events.serialization.event import event_to_dict
from openhands.runtime.base import Runtime
from openhands.utils.async_utils import call_async_from_sync
from openhands.utils.shutdown_listener import sleep_if_should_continue
USE_HINT_TEXT = os.environ.get('USE_HINT_TEXT', 'false').lower() == 'true'
USE_INSTANCE_IMAGE = os.environ.get('USE_INSTANCE_IMAGE', 'false').lower() == 'true'
RUN_WITH_BROWSING = os.environ.get('RUN_WITH_BROWSING', 'false').lower() == 'true'
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
'CodeActAgent': codeact_user_response,
'CodeActCommit0Agent': codeact_user_response,
}
def _get_commit0_workspace_dir_name(instance: pd.Series) -> str:
return instance['repo'].split('/')[1]
def get_instruction(instance: pd.Series, metadata: EvalMetadata):
workspace_dir_name = _get_commit0_workspace_dir_name(instance)
# Prepare instruction
test_cmd = instance['test']['test_cmd']
test_dir = instance['test']['test_dir']
# Instruction based on Anthropic's official trajectory
# https://github.com/eschluntz/swe-bench-experiments/tree/main/evaluation/verified/20241022_tools_claude-3-5-sonnet-updated/trajs
instruction = (
'<uploaded_files>\n'
f'/workspace/{workspace_dir_name}\n'
'</uploaded_files>\n'
f"I've uploaded a python code repository in the directory {workspace_dir_name}. Here is your task:\n\n"
'Here is your task:\n\n'
' You need to complete the implementations for all functions (i.e., those with pass\n'
' statements) and pass the unit tests.\n\n'
' Do not change the names of existing functions or classes, as they may be referenced\n'
' from other code like unit tests, etc.\n\n'
' When you generate code, you must maintain the original formatting of the function\n'
' stubs (such as whitespaces), otherwise we will not able to search/replace blocks\n'
' for code modifications, and therefore you will receive a score of 0 for your generated\n'
' code.'
'\n\n'
'Here is the command to run the unit tests:\n'
'<test_command>\n'
f'{test_cmd} {test_dir}\n'
'</test_command>\n\n'
'Make a local git commit for each agent step for all code changes. If there is not change in current step, do not make a commit.'
)
if RUN_WITH_BROWSING:
instruction += (
'<IMPORTANT!>\n'
'You SHOULD NEVER attempt to browse the web. '
'</IMPORTANT!>\n'
)
return instruction
# TODO: migrate all swe-bench docker to ghcr.io/openhands
DOCKER_IMAGE_PREFIX = os.environ.get(
'EVAL_DOCKER_IMAGE_PREFIX', 'docker.io/wentingzhao/'
)
logger.info(f'Using docker image prefix: {DOCKER_IMAGE_PREFIX}')
def get_instance_docker_image(repo_name: str) -> str:
return (DOCKER_IMAGE_PREFIX.rstrip('/') + '/' + repo_name).lower() + ':v0'
def get_config(
instance: pd.Series,
metadata: EvalMetadata,
) -> AppConfig:
# COMMIT0_CONTAINER_IMAGE = 'wentingzhao/'
assert USE_INSTANCE_IMAGE
# We use a different instance image for the each instance of commit0 eval
repo_name = instance['repo'].split('/')[1]
base_container_image = get_instance_docker_image(repo_name)
logger.info(
f'Using instance container image: {base_container_image}. '
f'Please make sure this image exists. '
f'Submit an issue on https://github.com/All-Hands-AI/OpenHands if you run into any issues.'
)
# else:
# raise
# base_container_image = SWE_BENCH_CONTAINER_IMAGE
# logger.info(f'Using swe-bench container image: {base_container_image}')
config = AppConfig(
default_agent=metadata.agent_class,
run_as_openhands=False,
max_iterations=metadata.max_iterations,
runtime=os.environ.get('RUNTIME', 'docker'),
sandbox=SandboxConfig(
base_container_image=base_container_image,
enable_auto_lint=True,
use_host_network=False,
# large enough timeout, since some testcases take very long to run
timeout=300,
api_key=os.environ.get('ALLHANDS_API_KEY', None),
remote_runtime_api_url=os.environ.get('SANDBOX_REMOTE_RUNTIME_API_URL'),
keep_runtime_alive=False,
remote_runtime_init_timeout=3600,
),
# do not mount workspace
workspace_base=None,
workspace_mount_path=None,
)
config.set_llm_config(
update_llm_config_for_completions_logging(
metadata.llm_config, metadata.eval_output_dir, instance['instance_id']
)
)
agent_config = AgentConfig(
codeact_enable_jupyter=False,
codeact_enable_browsing=RUN_WITH_BROWSING,
codeact_enable_llm_editor=False,
)
config.set_agent_config(agent_config)
return config
def initialize_runtime(
runtime: Runtime,
instance: pd.Series, # this argument is not required
):
"""Initialize the runtime for the agent.
This function is called before the runtime is used to run the agent.
"""
logger.info('-' * 30)
logger.info('BEGIN Runtime Initialization Fn')
logger.info('-' * 30)
workspace_dir_name = _get_commit0_workspace_dir_name(instance)
obs: CmdOutputObservation
action = CmdRunAction(
command=f'git clone -b commit0_combined https://github.com/{instance["repo"]}.git'
)
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
obs.exit_code == 0,
f'Failed to git clone -b commit0_combined https://github.com/{instance["repo"]}.git: {str(obs)}',
)
action = CmdRunAction(command=f'cd /workspace/{workspace_dir_name}')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
obs.exit_code == 0,
f'Failed to cd to /workspace/{workspace_dir_name}: {str(obs)}',
)
action = CmdRunAction(command='git checkout -b openhands')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
obs.exit_code == 0, f'Failed to git checkout new branch openhands: {str(obs)}'
)
# Install commit0
action = CmdRunAction(command='/root/.cargo/bin/uv pip install commit0')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
# logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
obs.exit_code == 0,
f'Failed to install commit0: {str(obs)}',
)
logger.info('-' * 30)
logger.info('END Runtime Initialization Fn')
logger.info('-' * 30)
def complete_runtime(
runtime: Runtime,
instance: pd.Series, # this argument is not required, but it is used to get the workspace_dir_name
) -> dict[str, Any]:
"""Complete the runtime for the agent.
This function is called before the runtime is used to run the agent.
If you need to do something in the sandbox to get the correctness metric after
the agent has run, modify this function.
"""
logger.info('-' * 30)
logger.info('BEGIN Runtime Completion Fn')
logger.info('-' * 30)
obs: CmdOutputObservation
workspace_dir_name = _get_commit0_workspace_dir_name(instance)
action = CmdRunAction(command='git add .')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
isinstance(obs, CmdOutputObservation) and obs.exit_code == 0,
f'Failed to git add -A: {str(obs)}',
)
action = CmdRunAction(command='git commit -m "openhands edits"')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
isinstance(obs, CmdOutputObservation)
and (obs.exit_code == 0 or obs.exit_code == 1),
f'Failed to git commit -m "openhands": {str(obs)}',
)
# Generate diff patch compared to base commit, excluding spec.pdf.bz2 files
n_retries = 0
git_patch = None
while n_retries < 5:
action = CmdRunAction(
command=f"git diff {instance['base_commit']} HEAD -- . ':(exclude)spec.pdf.bz2'"
)
action.set_hard_timeout(600 + 100 * n_retries)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
# logger.info(obs, extra={'msg_type': 'OBSERVATION'})
n_retries += 1
if isinstance(obs, CmdOutputObservation):
if obs.exit_code == 0:
git_patch = obs.content.strip()
break
else:
logger.info('Failed to get git diff, retrying...')
sleep_if_should_continue(10)
elif isinstance(obs, ErrorObservation):
logger.error(f'Error occurred: {obs.content}. Retrying...')
sleep_if_should_continue(10)
else:
assert_and_raise(False, f'Unexpected observation type: {str(obs)}')
assert_and_raise(git_patch is not None, 'Failed to get git diff (None)')
test_dir = instance['test']['test_dir']
action = CmdRunAction(
command=f"{instance['test']['test_cmd']} --json-report --json-report-file=report.json --continue-on-collection-errors {test_dir} > test_output.txt 2>&1"
)
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
isinstance(obs, CmdOutputObservation),
f'Failed to run test command: {str(obs)}',
)
# Read test output
action = CmdRunAction(command='cat test_output.txt')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
# logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
isinstance(obs, CmdOutputObservation),
f'Failed to read test output: {str(obs)}',
)
test_output = obs.content.strip()
# logger.info(f'Test output: {test_output}')
# Save pytest exit code
action = CmdRunAction(command='echo $?')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
# logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
isinstance(obs, CmdOutputObservation) and obs.exit_code == 0,
f'Failed to save pytest exit code: {str(obs)}',
)
pytest_exit_code = obs.content.strip()
# logger.info(f'Pytest exit code: {pytest_exit_code}')
# Read the test report
action = CmdRunAction(command='cat report.json')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
# logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
isinstance(obs, CmdOutputObservation),
f'Failed to read test report: {str(obs)}',
)
# Get test IDs from instance
repo_name = instance['repo'].split('/')[1]
repo_name = repo_name.replace('.', '-')
action = CmdRunAction(command=f'commit0 get-tests {repo_name}')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
# logger.info(obs, extra={'msg_type': 'OBSERVATION'})
test_ids = obs.content.strip().split('\n')
try:
report = json.loads(obs.content)
tests = {x['nodeid']: x['call'] for x in report['tests'] if 'call' in x}
# Calculate test statistics
status = []
runtimes = []
no_runs = 0
for test_id in test_ids:
if test_id in tests and tests[test_id] is not None:
status.append(tests[test_id]['outcome'])
runtimes.append(tests[test_id]['duration'])
no_runs += 1
else:
status.append('failed')
runtimes.append(0)
status_counts = Counter(status)
total_runtime = sum(runtimes) if no_runs > 0 else 0
num_passed = status_counts.get('passed', 0) + status_counts.get('xfail', 0)
passed_ratio = num_passed / len(status) if status else 0
eval_result = {
'name': workspace_dir_name,
'sum': total_runtime,
'passed': passed_ratio,
'num_passed': num_passed,
'num_tests': len(test_ids),
}
except json.JSONDecodeError:
logger.error('Failed to parse test report JSON')
eval_result = {
'name': workspace_dir_name,
'sum': 0,
'passed': 0,
'num_passed': 0,
'num_tests': len(test_ids),
}
# Create tarball of workspace
temp_zip = runtime.copy_from(f'/workspace/{workspace_dir_name}')
commit0_dir = os.path.dirname(__file__)
persistent_zip = os.path.join(commit0_dir, f'{workspace_dir_name}.zip')
with open(temp_zip, 'rb') as src, open(persistent_zip, 'wb') as dst:
dst.write(src.read())
zip_file = persistent_zip
return {
'eval_result': eval_result,
'git_patch': git_patch,
'test_output': test_output,
'pytest_exit_code': pytest_exit_code,
'zip_file': zip_file,
}
def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
) -> EvalOutput:
config = get_config(instance, metadata)
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
if reset_logger:
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir)
else:
logger.info(f'Starting evaluation for instance {instance.instance_id}.')
runtime = create_runtime(config)
call_async_from_sync(runtime.connect)
try:
initialize_runtime(runtime, instance)
instruction = get_instruction(instance, metadata)
# Here's how you can run the agent (similar to the `main` function) and get the final task state
state: State | None = asyncio.run(
run_controller(
config=config,
initial_user_action=MessageAction(content=instruction),
runtime=runtime,
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[
metadata.agent_class
],
)
)
# if fatal error, throw EvalError to trigger re-run
if (
state.last_error
and 'fatal error during agent execution' in state.last_error
and 'stuck in a loop' not in state.last_error
):
raise EvalException('Fatal error detected: ' + state.last_error)
# ======= THIS IS Commit0 specific =======
# Get git patch
return_val = complete_runtime(runtime, instance)
eval_result = return_val['eval_result']
git_patch = return_val['git_patch']
test_output = return_val['test_output']
pytest_exit_code = return_val['pytest_exit_code']
zip_file = return_val['zip_file']
repo_name = instance['repo'].split('/')[1]
zip_dest = os.path.join(
metadata.eval_output_dir, 'repos', repo_name, f'{repo_name}.zip'
)
patch_file = os.path.join(
metadata.eval_output_dir, 'repos', repo_name, f'{repo_name}_patch.diff'
)
test_output_file = os.path.join(
metadata.eval_output_dir, 'repos', repo_name, f'{repo_name}_test_output.txt'
)
pytest_exit_code_file = os.path.join(
metadata.eval_output_dir,
'repos',
repo_name,
f'{repo_name}_pytest_exit_code.txt',
)
os.makedirs(os.path.dirname(zip_dest), exist_ok=True)
os.rename(zip_file, zip_dest)
write_targets = [
(patch_file, git_patch),
(test_output_file, test_output),
(pytest_exit_code_file, pytest_exit_code),
]
for write_target in write_targets:
with open(write_target[0], 'w') as f:
f.write(write_target[1])
logger.info(
f'Got evaluation result for repo {instance.instance_id}:\n--------\n{eval_result}\n--------'
)
finally:
runtime.close()
# ==========================================
# ======= Attempt to evaluate the agent's edits =======
# we use eval_infer.sh to evaluate the agent's edits, not here
# because the agent may alter the environment / testcases
test_result = {
'eval_result': eval_result,
}
# If you are working on some simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
if state is None:
raise ValueError('State should not be None.')
# NOTE: this is NO LONGER the event stream, but an agent history that includes delegate agent's events
histories = [event_to_dict(event) for event in state.history]
metrics = state.metrics.get() if state.metrics else None
# Save the output
output = EvalOutput(
instance_id=instance.instance_id,
instruction=instruction,
instance=instance.to_dict(),
test_result=test_result,
metadata=metadata,
history=histories,
metrics=metrics,
error=state.last_error if state and state.last_error else None,
)
return output
def commit0_setup(dataset: pd.DataFrame, repo_split: str) -> pd.DataFrame:
"""Setup Commit0 dataset based on split type.
Args:
dataset: Full Commit0 dataset
repo_split: Split type ('all', 'lite' or specific repo name)
Returns:
Filtered dataset based on split type
"""
filtered_dataset = pd.concat(
[
dataset[dataset['repo'].str.split('/').str[1] == repo]
for repo in SPLIT.get(repo_split, [])
]
)
# Drop setup column if it exists
if 'setup' in filtered_dataset.columns:
filtered_dataset = filtered_dataset.drop('setup', axis=1)
# Replace all forward slashes in instance_id with hyphens
filtered_dataset['instance_id'] = filtered_dataset['repo'].str.split('/').str[1]
return filtered_dataset
if __name__ == '__main__':
parser = get_parser()
parser.add_argument(
'--dataset',
type=str,
default='wentingzhao/commit0_combined',
help='dataset to evaluate on, only test split exists for this HF dataset',
)
parser.add_argument(
'--split',
type=str,
default='test',
help='this is the HF dataset split',
)
parser.add_argument(
'--repo-split',
type=str,
default='lite',
help='all, lite, or each repo name',
)
args, _ = parser.parse_known_args()
# NOTE: It is preferable to load datasets from huggingface datasets and perform post-processing
# so we don't need to manage file uploading to OpenHands's repo
dataset = load_dataset(args.dataset, split=args.split)
commit0_datasets = commit0_setup(dataset.to_pandas(), args.repo_split)
logger.info(f'Loaded dataset {args.dataset} with reposplit {args.repo_split}')
llm_config = None
if args.llm_config:
llm_config = get_llm_config_arg(args.llm_config)
# modify_params must be False for evaluation purpose, for reproducibility and accurancy of results
llm_config.modify_params = False
llm_config.log_completions = True
if llm_config is None:
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
details = {}
_agent_cls = openhands.agenthub.Agent.get_cls(args.agent_cls)
dataset_descrption = (
args.dataset.replace('/', '__') + '-' + args.repo_split.replace('/', '__')
)
metadata = make_metadata(
llm_config,
dataset_descrption,
args.agent_cls,
args.max_iterations,
args.eval_note,
args.eval_output_dir,
details=details,
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
instances = prepare_dataset(commit0_datasets, output_file, args.eval_n_limit)
run_evaluation(
instances,
metadata,
output_file,
args.eval_num_workers,
process_instance,
timeout_seconds=120 * 60, # 2 hour PER instance should be more than enough
)
|