File size: 18,541 Bytes
246d201 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
import json
import os
import tempfile
import time
from functools import partial
import pandas as pd
from swebench.harness.grading import get_eval_report
from swebench.harness.run_evaluation import (
APPLY_PATCH_FAIL,
APPLY_PATCH_PASS,
)
from swebench.harness.test_spec import SWEbenchInstance, TestSpec, make_test_spec
from swebench.harness.utils import load_swebench_dataset
from tqdm import tqdm
from evaluation.benchmarks.swe_bench.resource.mapping import (
get_instance_resource_factor,
)
from evaluation.benchmarks.swe_bench.run_infer import get_instance_docker_image
from evaluation.utils.shared import (
EvalMetadata,
EvalOutput,
prepare_dataset,
reset_logger_for_multiprocessing,
run_evaluation,
)
from openhands.core.config import (
AppConfig,
SandboxConfig,
get_parser,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime
from openhands.events.action import CmdRunAction
from openhands.events.observation import CmdOutputObservation
from openhands.utils.async_utils import call_async_from_sync
# TODO: migrate all swe-bench docker to ghcr.io/openhands
DOCKER_IMAGE_PREFIX = os.environ.get('EVAL_DOCKER_IMAGE_PREFIX', 'docker.io/xingyaoww/')
logger.info(f'Using docker image prefix: {DOCKER_IMAGE_PREFIX}')
def process_git_patch(patch):
if not isinstance(patch, str):
return ''
if not patch.strip():
# skip empty patches
return ''
patch = patch.replace('\r\n', '\n')
# There might be some weird characters at the beginning of the patch
# due to some OpenHands inference command outputs
# FOR EXAMPLE:
# git diff --no-color --cached 895f28f9cbed817c00ab68770433170d83132d90
# [A[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[K0
# diff --git a/django/db/models/sql/.backup.query.py b/django/db/models/sql/.backup.query.py
# new file mode 100644
# index 0000000000..fc13db5948
# We "find" the first line that starts with "diff" and then we remove lines before it
lines = patch.split('\n')
for i, line in enumerate(lines):
if line.startswith('diff --git'):
patch = '\n'.join(lines[i:])
break
patch = patch.rstrip() + '\n' # Make sure the last line ends with a newline
return patch
def get_config(instance: pd.Series) -> AppConfig:
# We use a different instance image for the each instance of swe-bench eval
base_container_image = get_instance_docker_image(instance['instance_id'])
logger.info(
f'Using instance container image: {base_container_image}. '
f'Please make sure this image exists. '
f'Submit an issue on https://github.com/All-Hands-AI/OpenHands if you run into any issues.'
)
config = AppConfig(
run_as_openhands=False,
runtime=os.environ.get('RUNTIME', 'docker'),
sandbox=SandboxConfig(
base_container_image=base_container_image,
use_host_network=False,
# large enough timeout, since some testcases take very long to run
timeout=600,
api_key=os.environ.get('ALLHANDS_API_KEY', None),
remote_runtime_api_url=os.environ.get('SANDBOX_REMOTE_RUNTIME_API_URL'),
remote_runtime_init_timeout=3600,
remote_runtime_resource_factor=get_instance_resource_factor(
dataset_name=metadata.dataset,
instance_id=instance['instance_id'],
),
),
# do not mount workspace
workspace_base=None,
workspace_mount_path=None,
)
return config
def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
log_dir: str | None = None,
runtime_failure_count: int = 0,
) -> EvalOutput:
"""
Evaluate agent performance on a SWE-bench problem instance.
Note that this signature differs from the expected input to `run_evaluation`. Use
`functools.partial` to provide optional arguments before passing to the evaluation harness.
Args:
log_dir (str | None, default=None): Path to directory where log files will be written. Must
be provided if `reset_logger` is set.
Raises:
AssertionError: if the `reset_logger` flag is set without a provided log directory.
"""
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
if reset_logger:
assert (
log_dir is not None
), "Can't reset logger without a provided log directory."
os.makedirs(log_dir, exist_ok=True)
reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir)
else:
logger.info(f'Starting evaluation for instance {instance.instance_id}.')
config = get_config(instance)
instance_id = instance.instance_id
model_patch = instance['model_patch']
test_spec: TestSpec = instance['test_spec']
logger.info(f'Starting evaluation for instance {instance_id}.')
if 'test_result' not in instance.keys():
instance['test_result'] = {}
instance['test_result']['report'] = {
'empty_generation': False,
'resolved': False,
'failed_apply_patch': False,
'error_eval': False,
'test_timeout': False,
}
if model_patch == '':
instance['test_result']['report']['empty_generation'] = True
return EvalOutput(
instance_id=instance_id,
test_result=instance['test_result'],
metadata=metadata,
)
# Increase resource_factor with increasing attempt_id
if runtime_failure_count > 0:
config.sandbox.remote_runtime_resource_factor = min(
config.sandbox.remote_runtime_resource_factor * (2**runtime_failure_count),
8,
)
logger.warning(
f'This is the {runtime_failure_count + 1}th attempt for instance {instance.instance_id}, setting resource factor to {config.sandbox.remote_runtime_resource_factor}'
)
try:
runtime = create_runtime(config)
call_async_from_sync(runtime.connect)
# Get patch and save it to /tmp/patch.diff
with tempfile.TemporaryDirectory() as temp_dir:
# Patch file
patch_file_path = os.path.join(temp_dir, 'patch.diff')
with open(patch_file_path, 'w') as f:
f.write(model_patch)
runtime.copy_to(patch_file_path, '/tmp')
# Eval script
eval_script_path = os.path.join(temp_dir, 'eval.sh')
with open(eval_script_path, 'w') as f:
f.write(test_spec.eval_script)
runtime.copy_to(eval_script_path, '/tmp')
# Set +x
action = CmdRunAction(command='chmod +x /tmp/eval.sh')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert obs.exit_code == 0
# Apply patch
exec_command = (
'cd /testbed && '
"(git apply -v /tmp/patch.diff && echo 'APPLY_PATCH_PASS' || "
"(echo 'Failed to apply patch with git apply, trying with patch command...' && "
"(patch --batch --fuzz=5 -p1 -i /tmp/patch.diff && echo 'APPLY_PATCH_PASS' || "
"echo 'APPLY_PATCH_FAIL')))"
)
action = CmdRunAction(command=exec_command)
action.set_hard_timeout(600)
obs = runtime.run_action(action)
assert isinstance(obs, CmdOutputObservation)
apply_patch_output = obs.content
assert isinstance(apply_patch_output, str)
instance['test_result']['apply_patch_output'] = apply_patch_output
if 'APPLY_PATCH_FAIL' in apply_patch_output:
logger.info(f'[{instance_id}] {APPLY_PATCH_FAIL}:\n{apply_patch_output}')
instance['test_result']['report']['failed_apply_patch'] = True
return EvalOutput(
instance_id=instance_id,
test_result=instance['test_result'],
metadata=metadata,
)
elif 'APPLY_PATCH_PASS' in apply_patch_output:
logger.info(f'[{instance_id}] {APPLY_PATCH_PASS}:\n{apply_patch_output}')
# Run eval script in background and save output to log file
log_file = '/tmp/eval_output.log'
action = CmdRunAction(command=f'/tmp/eval.sh > {log_file} 2>&1 & echo $!')
action.set_hard_timeout(300) # Short timeout just to get the process ID
obs = runtime.run_action(action)
if isinstance(obs, CmdOutputObservation) and obs.exit_code == 0:
pid = obs.content.split()[-1].strip()
logger.info(
f'[{instance_id}] Evaluation process started with PID: {pid}'
)
# Poll for completion
start_time = time.time()
timeout = 1800 # 30 minutes
while True:
seconds_elapsed = time.time() - start_time
if seconds_elapsed > timeout:
logger.info(
f'[{instance_id}] Evaluation timed out after {timeout} seconds'
)
instance['test_result']['report']['test_timeout'] = True
break
check_action = CmdRunAction(
command=f'ps -p {pid} > /dev/null; echo $?'
)
check_action.set_hard_timeout(300)
check_obs = runtime.run_action(check_action)
if (
isinstance(check_obs, CmdOutputObservation)
and check_obs.content.split()[-1].strip() == '1'
):
logger.info(
f'[{instance_id}] Evaluation process completed after {seconds_elapsed} seconds'
)
break
logger.info(
f'[{instance_id}] [{seconds_elapsed:.0f}s] Evaluation still running, waiting...'
)
time.sleep(30) # Wait for 30 seconds before checking again
# Read the log file
cat_action = CmdRunAction(command=f'cat {log_file}')
cat_action.set_hard_timeout(300)
cat_obs = runtime.run_action(cat_action)
# Grade answer
if isinstance(cat_obs, CmdOutputObservation) and cat_obs.exit_code == 0:
test_output = cat_obs.content
assert isinstance(test_output, str)
instance['test_result']['test_output'] = test_output
# Get report from test output
logger.info(f'[{instance_id}] Grading answer...')
with tempfile.TemporaryDirectory() as temp_dir:
# Create a directory structure that matches the expected format
# NOTE: this is a hack to make the eval report format consistent
# with the original SWE-Bench eval script
log_dir = os.path.join(temp_dir, 'logs', instance_id.lower())
os.makedirs(log_dir, exist_ok=True)
test_output_path = os.path.join(log_dir, 'test_output.txt')
with open(test_output_path, 'w') as f:
f.write(test_output)
try:
_report = get_eval_report(
test_spec=test_spec,
prediction={
'model_patch': model_patch,
'instance_id': instance_id,
},
log_path=test_output_path,
include_tests_status=True,
)
report = _report[instance_id]
logger.info(
f"[{instance_id}] report: {report}\nResult for {instance_id}: resolved: {report['resolved']}"
)
instance['test_result']['report']['resolved'] = report[
'resolved'
]
except Exception as e:
logger.error(
f'[{instance_id}] Error when getting eval report: {e}'
)
instance['test_result']['report']['resolved'] = False
instance['test_result']['report']['error_eval'] = True
else:
logger.info(f'[{instance_id}] Error when starting eval:\n{obs.content}')
instance['test_result']['report']['error_eval'] = True
return EvalOutput(
instance_id=instance_id,
test_result=instance['test_result'],
metadata=metadata,
)
else:
logger.info(
f'[{instance_id}] Unexpected output when applying patch:\n{apply_patch_output}'
)
raise RuntimeError(
instance_id,
f'Unexpected output when applying patch:\n{apply_patch_output}',
logger,
)
finally:
runtime.close()
if __name__ == '__main__':
parser = get_parser()
parser.add_argument(
'--input-file',
type=str,
help='Path to input predictions file',
required=True,
)
parser.add_argument(
'--dataset',
type=str,
default='princeton-nlp/SWE-bench',
help='data set to evaluate on, either full-test or lite-test',
)
parser.add_argument(
'--split',
type=str,
default='test',
help='split to evaluate on',
)
args, _ = parser.parse_known_args()
# Load SWE-Bench dataset
full_dataset: list[SWEbenchInstance] = load_swebench_dataset(
args.dataset, args.split
)
instance_id_to_instance = {
instance['instance_id']: instance for instance in full_dataset
}
logger.info(
f'Loaded dataset {args.dataset} with split {args.split} to run inference on.'
)
# Load predictions
assert args.input_file.endswith('.jsonl'), 'Input file must be a jsonl file.'
required_fields = ['instance_id', 'model_patch', 'test_result']
with open(args.input_file) as f:
predictions = pd.DataFrame.from_records(
[
{k: v for k, v in json.loads(line).items() if k in required_fields}
for line in tqdm(f, desc='Loading predictions')
]
)
assert (
'instance_id' in predictions.columns
), 'Input file must contain instance_id column.'
if 'model_patch' not in predictions.columns and (
'test_result' in predictions.columns
and 'model_patch' in predictions['test_result'].iloc[0]
):
raise ValueError(
'Input file must contain model_patch column OR test_result column with model_patch field.'
)
assert len(predictions['instance_id'].unique()) == len(
predictions
), 'instance_id column must be unique.'
if 'model_patch' not in predictions.columns:
predictions['model_patch'] = predictions['test_result'].apply(
lambda x: x.get('git_patch', '')
)
assert {'instance_id', 'model_patch'}.issubset(
set(predictions.columns)
), 'Input file must contain instance_id and model_patch columns.'
# Process model_patch
predictions['model_patch'] = predictions['model_patch'].apply(process_git_patch)
# Merge predictions with dataset
predictions['instance'] = predictions['instance_id'].apply(
lambda x: instance_id_to_instance[x]
)
predictions['test_spec'] = predictions['instance'].apply(make_test_spec)
# Prepare dataset
output_file = args.input_file.replace('.jsonl', '.swebench_eval.jsonl')
instances = prepare_dataset(predictions, output_file, args.eval_n_limit)
# If possible, load the relevant metadata to avoid issues with `run_evaluation`.
metadata: EvalMetadata | None = None
metadata_filepath = os.path.join(os.path.dirname(args.input_file), 'metadata.json')
if os.path.exists(metadata_filepath):
with open(metadata_filepath, 'r') as metadata_file:
data = metadata_file.read()
metadata = EvalMetadata.model_validate_json(data)
# The evaluation harness constrains the signature of `process_instance_func` but we need to
# pass extra information. Build a new function object to avoid issues with multiprocessing.
process_instance_func = partial(
process_instance, log_dir=output_file.replace('.jsonl', '.logs')
)
run_evaluation(
instances,
metadata=metadata,
output_file=output_file,
num_workers=args.eval_num_workers,
process_instance_func=process_instance_func,
)
# Load evaluated predictions & print number of resolved predictions
evaluated_predictions = pd.read_json(output_file, lines=True)
fields = ['resolved', 'failed_apply_patch', 'error_eval', 'empty_generation']
def count_report_field(row, field):
return row['test_result']['report'][field]
report = {}
for field in fields:
count = evaluated_predictions.apply(
count_report_field, args=(field,), axis=1
).sum()
report[field] = count
logger.info(
f'# {field}: {count} / {len(evaluated_predictions)}. ({count / len(evaluated_predictions):.2%})'
)
|