File size: 20,588 Bytes
246d201 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 |
import json
import logging
from openai import OpenAI
from .lm_utils import run_chatgpt_query_multi_turn
from .openai_helpers import get_response
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO,
)
logger = logging.getLogger(__name__)
def get_score_from_answer(type, answer):
if type == 'context':
answer = answer.replace('Answer:', '').strip()
if answer.startswith('A)'):
return 1.0
elif answer.startswith('B)'):
return 0.0
return -1.0
elif type == 'var':
try:
var_json = json.loads(answer)
# print(f"var_json:{var_json}")
p = 0.0
r = 0.0
f1 = 0.0
if var_json['sizeB']:
p = var_json['intersection'] / var_json['sizeB']
if var_json['sizeA']:
r = var_json['intersection'] / var_json['sizeA']
if p > 0.0 and r > 0.0:
f1 = (2 * p * r) / (p + r)
else:
f1 = 0.0
eval_rec = {
'p': p,
'r': r,
'f1': f1,
'sizeA': var_json['sizeA'],
'sizeB': var_json['sizeB'],
'intersection': var_json['intersection'],
'explanation': var_json['explanation'],
}
print(f'var_eval: {eval_rec}')
return eval_rec
except Exception: # COMMENT: added Exception
return {'p': -1.0, 'r': -1.0, 'f1': -1.0}
elif type == 'rel':
print(answer)
rel_json = json.loads(answer)
answer_str = rel_json['answer'].strip()
if answer_str.startswith('A') or 'very similar' in answer_str:
return 1.0
elif (
answer_str.startswith('B') or 'similar but general than HypoA' in answer_str
):
return 0.5
elif answer_str.startswith('C') or 'different' in answer_str:
return 0.0
return -1.0
return -1.0
def ask_dimension_question(
query,
gold_hypo,
gold_workflow,
gen_hypo,
gen_workflow,
dataset_meta,
llm_used,
dimension,
dataset_type,
use_column_metadata=True,
):
dimension_question = ''
answer = ''
score = 0.0
if dimension == 'var':
score = {'p': -1.0, 'r': -1.0, 'f1': -1.0}
num_tokens = 256
num_retries = 1
json_response = False
messages = [
{
'role': 'system',
'content': 'You are an AI assistant that helps evaluate a data-driven hypothesis. You are a helpful assistant who is not talkative. You only respond with the exact answer to a query without additional conversation.',
},
]
if dimension == 'context':
dimension_question = """\
Question: Is HypoB defined in the same context as HypoA?
(Context refers to assumptions/stratification under which the hypotheses are defined.)
Options: A) same B) different
What is your answer?"""
elif dimension == 'var':
dimension_question = """\
Question: For both HypoA and HypoB, what are the different variables found in the hypotheses? \
Return your answer as a JSON object in the following format:
```json
{{
"sizeA": num of variables used in HypoA
"sizeB": num of variables used in HypoB
"intersection": num of variables common in HypoA and HypoB. Use *fuzzy matching* to determine intersection, accounting for paraphrases or slightly different surface forms
"explanation": a short text explanation about the variables
}}```
Answer:"""
num_tokens = 512
num_retries = 1
json_response = True
elif dimension == 'rel':
dimension_question = """\
Question: Does HypoB exhibit the same relation as HypoA?
Compare using following example hierarchy of relationships (based on specificity): \
"there exists a relationship" > "positive relationship" > "positive AND (linear OR quadratic)" > "positive AND linear".
Options: A) very similar B) similar but general than HypoA C) different
Return your answer as a JSON object in the following format:
```json
{{
"answer": one of the options from A) very similar B) similar but general than HypoA C) different
"explanation": a short text explanation about the relationship comparison
}}```
Answer:"""
num_tokens = 512
num_retries = 1
json_response = True
datasets_json = prepare_dataset_metadata_json(
dataset_meta, dataset_type=dataset_type, use_column_metadata=use_column_metadata
)
dimension_question_str = f"""\
You are going to compare two natural-language hypotheses HypoA and HypoB accompanied with optional workflows: WorkflowA for HypoA and WorkflowB for HypoB. \
Both the hypotheses answer the natural language query "QUERY" over the dataset(s) described by dataset description(s) and column description(s) below. \
Compare HypoA and HypoB in terms of three aspects: Contexts, Variables, and Relations. \
E.g., for the hypothesis "From 1995 to 2009, the number of sandhill cranes around the tundra (Indigilka River) surged by an astounding ~10X":
* Contexts refer to stratification of the data under which the given hypothesis is True. E.g., "For all women", "From 1995 to 2009".
* Variables refer to the set of variables (either dependent or independent) that are mentioned in the hypothesis. E.g., number of sandhill cranes, location.
* Relations refer to the form of relation between the variables. E.g., "surged by ~10x".
Answer following questions for a given pair of hypotheses, HypoA and HypoB, along with an explanation grounded on the QUERY and the DATASET(S).
Here is the metadata for the task:
```json
{{
"datasets": {datasets_json},
"query": {query},
"HypoA": {gold_hypo},
"WorkflowA": {gold_workflow},
"HypoB": {gen_hypo},
"WorkflowB": {gen_workflow}
}}
```
{dimension_question}"""
messages.append({'role': 'user', 'content': dimension_question_str})
for retry in range(num_retries):
response = run_chatgpt_query_multi_turn(
messages=messages,
model_name=llm_used,
max_tokens=num_tokens,
temperature=0, # 0 for greedy best decoding
json_response=json_response,
)
if response is not None: # COMMENT: changed from != to is not
break
if response is not None: # COMMENT: changed from != to is not
answer = response.choices[0].message.content.strip()
score = get_score_from_answer(type=dimension, answer=answer)
return dimension_question, answer, score
def prepare_dataset_metadata_json(dataset_meta, dataset_type, use_column_metadata=True):
if dataset_meta is None: # COMMENT: changed from == to is None
return [
{
'dataset_description': '',
'columns': [],
}
]
datasets_json = []
if dataset_type == 'real':
for d in dataset_meta['datasets']:
datasets_json.append(
{
'dataset_description': d['description'],
'columns': [
{'name': col['name'], 'description': col['description']}
for col in d['columns']['raw']
]
if use_column_metadata
else [],
}
)
else:
for d in dataset_meta['datasets']:
datasets_json.append(
{
'dataset_description': d['description'],
'columns': [
{'name': col['name'], 'description': col['description']}
for col in d['columns']
]
if use_column_metadata
else [],
}
)
return datasets_json
def get_sub_hypotheses(
query,
hypo,
workflow,
dataset_meta,
llm_used,
dataset_type,
use_column_metadata=True,
):
client = OpenAI()
extraction_prompt = """\
Given a set of dataset columns, a ground-truth hypothesis, and the analysis workflow used, your task is to extract three dimensions that define the hypothesis: Context, Variables, and Relations. \
Here are the definitions for these dimensions:
- Contexts: Boundary conditions that limit the scope of a hypothesis. E.g., “for men over \
the age of 30”, “in Asia and Europe”. If the context applies to the full dataset, then extract the context from the dataset_descrption.
- Variables: Known concepts that interact in a meaningful way under a given context to \
produce the hypothesis. E.g., gender, age, income, or "None" if there is no interacting variable.
- Relations: Interactions between a given set of variables under a given context to produce \
the hypothesis. E.g., “quadratic relationship”, “inversely proportional”, piecewise conditionals, \
or "None" if there is no interacting relationship.
Make sure to only use the information present in the hypothesis and the workflow. Do not add any new information. \
For each dimension, be specific, and do not omit any important details.
Here is the metadata for the task:
```json
{
"datasets": %s,
"hypothesis": "%s",
"workflow": "%s"
}
```
Return your answer as a JSON object in the following format:
```json
{
"sub_hypo": [
{
"text": the hypothesis in natural language,
"context": a short text description of the context of the hypothesis,
"variables": a list of columns involved in the hypothesis,
"relations": a short text description of the relationship between the variables of the hypothesis
},
...
]
}```
"""
datasets_json = prepare_dataset_metadata_json(
dataset_meta, dataset_type, use_column_metadata=use_column_metadata
)
_prompt = extraction_prompt % (datasets_json, hypo, workflow)
sub_hypo_json = get_response(client, _prompt, model=llm_used, max_retry=1)
if sub_hypo_json is not None: # COMMENT: changed from != to is not
# print(f"full hypothesis: {hypo}")
print(f'sub_hypo_json: {sub_hypo_json}')
else:
sub_hypo_json = {
'sub_hypo': [],
}
sub_hypo_json['full_hypo'] = hypo
return sub_hypo_json
def match_context_with_gpt(
gold_hyp, gold_context, pred_hyp, pred_context, model='gpt-3.5-turbo'
):
prompt = f"""\
Given a gold hypothesis, a gold context, a predicted hypothesis, and a predicted context, your task is \
to determine if the predicted context semantically matches the ground-truth context. \
Here is the definition for Context: Boundary conditions that limit the scope of a sub-hypothesis. E.g., “for men over the age of 30”, “in Asia and Europe”. If the context applies to the full dataset, then the context is derived from the dataset_descrption. \
Here is the definition for Context: Boundary conditions that limit the scope of a sub-hypothesis. E.g., “for men over the age of 30”, “in Asia and Europe”. If the context applies to the full dataset, then the context is derived from the dataset_descrption. \
If the predicted context matches the gold context, return true, otherwise return false.
If both gold and predicted hypotheses are defined over the context of the full dataset, then also return true.
If both gold and predicted hypotheses are defined over the context of the full dataset, then also return true.
Here is the metadata for the task:
```json
{{
"gold_hypothesis": "{gold_hyp}",
"gold_context": "{gold_context}",
"predicted_hypothesis": "{pred_hyp}",
"predicted_context": "{pred_context}"
}}
```
Return your answer as a JSON object in the following format:
```json
{{
"match": true or false
}}
```"""
client = OpenAI()
output = get_response(client, prompt, model=model)
return output.get('match', False)
def is_matching_context(gold_hyp, gold_context, pred_hyp, pred_context, llm_used):
if gold_context == pred_context:
return True
if 'None' in [gold_context, pred_context]:
return False
return match_context_with_gpt(
gold_hyp, gold_context, pred_hyp, pred_context, model=llm_used
)
def run_eval_gold_vs_gen_NL_subhypo(
query,
gold_hypo,
gold_workflow,
gen_hypo,
gen_workflow,
dataset_meta,
llm_used,
context_score,
dataset_type,
use_column_metadata=True,
):
# GPT-4 based evaluation to evaluate generated hypothesis in terms of context, variables, relation
eval_rec = {
'query': query,
'HypoA': gold_hypo,
'WorkflowA': gold_workflow,
'HypoB': gen_hypo,
'WorkflowB': gen_workflow,
}
for dimension in ['var', 'rel']:
question, answer, score = ask_dimension_question(
query,
gold_hypo,
gold_workflow,
gen_hypo,
gen_workflow,
dataset_meta,
llm_used,
dimension=dimension,
dataset_type=dataset_type,
use_column_metadata=use_column_metadata,
)
eval_rec[dimension] = {'question': question, 'answer': answer, 'score': score}
eval_rec['context'] = context_score
eval_rec['accuracy_score'] = (
1.0
* eval_rec['context']['score']
* eval_rec['var']['score']['f1']
* eval_rec['rel']['score']
)
return eval_rec
def run_eval_gold_vs_gen_NL_hypo_workflow(
query,
gold_hypo,
gold_workflow,
gen_hypo,
gen_workflow,
dataset_meta,
llm_used,
dataset_type,
use_column_metadata=True,
):
# Input: Dataset Metadata, Query, Gold {Hg, Wg}, Predicted {Hp, Wp}
# Output: eval_rec json includes final_score
# Procedure:
# Dataset Metadata, Query, Gold {Hg, Wg}, Pred {Hg, Wg}
# Gold: [Hg1, Hg2] (compute on the fly) Hg1 is a NL form of subhypothesis
# Predicted: [Hp1, Hp2] (compute on the fly)
# Compute Intersection: [(Hg_i, Hp_j), …] # tuples of (gold,pred) that matched with context (do this w/o explicit extraction)
# # filter so that a gold context and a predicted context are only attached to one tuple
# Compute recall_context (programmatically)
# r_v_list = []
# For (Hg_i, Hp_j) in the intersection:
# With Hg_i, Hp_j in NL, ask GPT4 → #variables and #intersection and a paragraph explanation and programmatically calculate f1_v
# Hg_i, Hp_j in NL, ask GPT4 → matching score (0, 0.5 or 1) : A) very similar B) similar but general than HypoA C) different + explanation
# r_v_list ← f1_v * score_r
# accuracy_score = mean(r_v_list)
# score = [ recall_context * mean over predicted context(context_score * var_score *rel_score )]
# recall_context = 1.0 # COMMENT: never used
eval_rec = {
'query': query,
'HypoA': gold_hypo,
'WorkflowA': gold_workflow,
'HypoB': gen_hypo,
'WorkflowB': gen_workflow,
}
gold_sub_hypo_json = get_sub_hypotheses(
query=query,
hypo=gold_hypo,
workflow=gold_workflow,
dataset_meta=dataset_meta,
llm_used=llm_used,
dataset_type=dataset_type,
use_column_metadata=use_column_metadata,
)
if len(gold_sub_hypo_json['sub_hypo']) == 0:
gold_sub_hypo_json['sub_hypo'] = [
{
'text': gold_hypo,
'context': 'None',
'variables': [],
'relations': '',
'explanation': 'unable to segment',
}
]
print(f'gold_sub_hypo_json: {gold_sub_hypo_json}')
gen_sub_hypo_json = get_sub_hypotheses(
query=query,
hypo=gen_hypo,
workflow=gen_workflow,
dataset_meta=dataset_meta,
llm_used=llm_used,
dataset_type=dataset_type,
use_column_metadata=use_column_metadata,
)
if len(gen_sub_hypo_json['sub_hypo']) == 0:
gen_sub_hypo_json['sub_hypo'] = [
{
'text': gen_hypo,
'context': 'None',
'variables': [],
'relations': '',
'explanation': 'unable to segment',
}
]
print(f'gen_sub_hypo_json: {gen_sub_hypo_json}')
eval_rec['gold_sub_hypo'] = gold_sub_hypo_json
eval_rec['gen_sub_hypo'] = gen_sub_hypo_json
gold_subh_covered = []
gen_subh_to_gold_subh = dict()
gen_gold_subh_to_context = dict()
for p_id, gen_subh in enumerate(gen_sub_hypo_json['sub_hypo']):
gen_subh_to_gold_subh[p_id] = -1
for g_id, gold_subh in enumerate(gold_sub_hypo_json['sub_hypo']):
if g_id in gold_subh_covered:
continue
# match context
context_bool = is_matching_context(
gold_subh['text'],
gold_subh.get('context', ''),
gen_subh['text'],
gen_subh.get('context', ''),
llm_used,
)
if context_bool:
context_score = 1.0
else:
context_score = 0.0
if context_score == 1.0: # match only when context_score = 1.0
gen_subh_to_gold_subh[p_id] = g_id
gold_subh_covered.append(g_id)
gen_gold_subh_to_context[f'P{p_id}||G{g_id}'] = {
'question': f"""Comapring: GoldH: {gold_subh["text"]}, GoldC: {gold_subh['context']}\nGenH: {gen_subh['text']}, GenC: {gen_subh['context']}""",
'answer': context_bool,
'score': context_score,
}
break
print(f'gen_subh_to_gold_subh: {gen_subh_to_gold_subh}')
eval_rec['gen_subh_to_gold_subh'] = gen_subh_to_gold_subh
eval_rec['gold_subh_covered'] = gold_subh_covered
matched_gold_gen_subh_evals = dict()
sum_accuracy_score = 0.0
for p_id, g_id in gen_subh_to_gold_subh.items():
if g_id >= 0:
key = f'P{p_id}||G{g_id}'
context_score = gen_gold_subh_to_context[key]
subh_eval_rec = run_eval_gold_vs_gen_NL_subhypo(
query,
gold_hypo,
gold_workflow,
gen_hypo,
gen_workflow,
dataset_meta,
llm_used,
context_score,
dataset_type=dataset_type,
use_column_metadata=use_column_metadata,
)
sum_accuracy_score += subh_eval_rec['accuracy_score']
matched_gold_gen_subh_evals[key] = subh_eval_rec
eval_rec['matched_gold_gen_subh_evals'] = matched_gold_gen_subh_evals
eval_rec['recall_context'] = (
len(gold_subh_covered) / len(gold_sub_hypo_json['sub_hypo'])
if len(gold_sub_hypo_json['sub_hypo'])
else 0.0
)
mean_accuracy_score = (
sum_accuracy_score / len(gen_subh_to_gold_subh)
if len(gen_subh_to_gold_subh)
else 0.0
)
eval_rec['mean_accuracy_score'] = mean_accuracy_score
final_score = eval_rec['recall_context'] * mean_accuracy_score
eval_rec['final_score'] = final_score
print(f'eval_rec: {json.dumps(eval_rec, indent=2)}')
return eval_rec
|