File size: 16,753 Bytes
246d201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
import asyncio
import json
import os

import git
import pandas as pd

from evaluation.benchmarks.discoverybench.eval_utils.eval_w_subhypo_gen import (
    run_eval_gold_vs_gen_NL_hypo_workflow,
)
from evaluation.benchmarks.discoverybench.eval_utils.response_parser import (
    extract_gen_hypo_from_logs,
)
from evaluation.utils.shared import (
    EvalMetadata,
    EvalOutput,
    codeact_user_response,
    compatibility_for_eval_history_pairs,
    make_metadata,
    prepare_dataset,
    reset_logger_for_multiprocessing,
    run_evaluation,
)
from openhands.controller.state.state import State
from openhands.core.config import (
    AgentConfig,
    AppConfig,
    SandboxConfig,
    get_llm_config_arg,
    parse_arguments,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.events.action import AgentFinishAction, CmdRunAction, MessageAction
from openhands.events.observation import CmdOutputObservation
from openhands.runtime.base import Runtime
from openhands.utils.async_utils import call_async_from_sync

EVALUATION_LLM = 'gpt-4-1106-preview'

DATA_FILES = {}

LIBRARIES = [
    'pandas',
    'numpy',
    'scipy',
    'matplotlib',
    'seaborn',
    'scikit-learn',
    'statsmodels',
]

AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
    'CodeActAgent': codeact_user_response,
}

AGENT_CLS_TO_INST_SUFFIX = {
    'CodeActAgent': 'When you think you have fixed the issue through code changes, please finish the interaction using the "finish" tool.\n'
}


def get_config(

    metadata: EvalMetadata,

) -> AppConfig:
    config = AppConfig(
        default_agent=metadata.agent_class,
        run_as_openhands=False,
        runtime='docker',
        max_iterations=metadata.max_iterations,
        sandbox=SandboxConfig(
            base_container_image='python:3.12-bookworm',
            enable_auto_lint=True,
            use_host_network=False,
        ),
        # do not mount workspace
        workspace_base=None,
        workspace_mount_path=None,
    )
    config.set_llm_config(metadata.llm_config)
    agent_config = config.get_agent_config(metadata.agent_class)
    agent_config.enable_prompt_extensions = False
    agent_config = AgentConfig(
        function_calling=False,
        codeact_enable_jupyter=True,
        codeact_enable_browsing_delegate=True,
    )
    config.set_agent_config(agent_config)
    return config


def get_dv_query_for_real(

    datasets, question, domain_knowledge=None, workflow_tags=None

):
    """

    Prepare a structured query for the agent to execute on the specified datasets.



    This function constructs a query by compiling metadata from the provided datasets, along with any relevant domain knowledge and workflow tags.



    Args:

        datasets: List of datasets

        question: Query to be answered

        domain_knowledge: Domain knowledge if any

        workflow_tags: Workflow tags if any



    Returns:

        query_to_dv: Query to be run on the dataset

        dataset_meta: Metadata of the dataset

    """

    dataset_meta = ''
    for dataset_metadata in datasets:
        dataset_meta += 'Dataset name: ' + dataset_metadata['name']
        dataset_meta += 'Dataset description: ' + dataset_metadata['description']
        dataset_meta += '\nBrief description of columns: '
        for col in dataset_metadata['columns']['raw']:
            dataset_meta += col['name'] + ': ' + col['description'] + ', '

    query_to_dv = dataset_meta

    query_to_dv += f'\nQuery: {question}'

    if domain_knowledge:
        query_to_dv += (
            '\nAdditionally, we provide some hints that might be useful to solve the task. Domain Knowledge: \n'
            + domain_knowledge
            + '.\n'
        )

    if workflow_tags:
        query_to_dv += 'The meta tags are: ' + workflow_tags + '.\n'

    query_to_dv += (
        'In the final answer, please write down a scientific hypothesis in '
        'natural language, derived from the provided dataset, clearly stating the '
        'context of hypothesis (if any), variables chosen (if any) and '
        'relationship between those variables (if any) including any statistical significance.'
        'Also generate a summary of the full workflow starting from data loading that led to the final answer as WORKFLOW SUMMARY:'
    )

    # Run the NL query through datavoyager
    return query_to_dv, dataset_meta


def initialize_runtime(runtime: Runtime, data_files: list[str]):
    """

    Initialize the runtime for the agent.



    This function is called before the runtime is used to run the agent.

    """
    logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
    obs: CmdOutputObservation

    action = CmdRunAction(command='mkdir -p /workspace')
    logger.info(action, extra={'msg_type': 'ACTION'})
    obs = runtime.run_action(action)
    assert obs.exit_code == 0

    action = CmdRunAction(command='cd /workspace')
    logger.info(action, extra={'msg_type': 'ACTION'})
    obs = runtime.run_action(action)
    assert obs.exit_code == 0

    for file in data_files:
        runtime.copy_to(
            file,
            '/workspace',
        )

    for lib in LIBRARIES:
        action = CmdRunAction(command=f'pip install {lib}')
        logger.info(action, extra={'msg_type': 'ACTION'})
        obs = runtime.run_action(action)
        assert obs.exit_code == 0

    logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")


def get_last_agent_finish_action(state: State) -> AgentFinishAction:
    for event in reversed(state.history):
        if isinstance(event, AgentFinishAction):
            return event
    return None


def get_last_message_action(state: State) -> MessageAction:
    for event in reversed(state.history):
        if isinstance(event, MessageAction):
            return event
    return None


def complete_runtime(state: State):
    last_agent_finish_action = get_last_agent_finish_action(state)
    last_agent_message_action = get_last_message_action(state)

    if last_agent_finish_action is not None:
        final_message_1 = last_agent_finish_action.thought
        gen_hypo_1, gen_workflow_1, error_1 = extract_gen_hypo_from_logs(
            final_message_1
        )
    else:
        gen_hypo_1, gen_workflow_1, error_1 = '', '', ''

    if last_agent_message_action is not None:
        final_message_2 = last_agent_message_action.content
        gen_hypo_2, gen_workflow_2, error_2 = extract_gen_hypo_from_logs(
            final_message_2
        )
    else:
        gen_hypo_2, gen_workflow_2, error_2 = '', '', ''

    if gen_hypo_1 and gen_hypo_2:
        test_result = {
            'gen_hypo': last_agent_finish_action.thought
            if last_agent_finish_action
            else last_agent_message_action.content,
            'gen_workflow': '',
            'error': '',
        }
        return test_result

    test_result = {
        'gen_hypo': gen_hypo_1 if gen_hypo_1 else gen_hypo_2,
        'gen_workflow': gen_workflow_1 if gen_workflow_1 else gen_workflow_2,
        'error': error_1 if error_1 else error_2,
    }

    return test_result


def process_instance(

    instance: pd.Series,

    metadata: EvalMetadata,

    reset_logger: bool = True,

):
    """

    Process and evaluate a single instance of the dataset.



    This function executes the OpenHands agent

    for a specific instance of the dataset. It retrieves

    the agent's results and evaluates them against the gold

    hypothesis.



    Args:

        instance: A single row of the dataset

        metadata: Metadata for the evaluation

        reset_logger: Whether to reset the logger



    Returns:

        output: EvalOutput object

    """

    config = get_config(metadata)

    # Setup the logger properly, so you can run
    # multi-processing to parallelize the evaluation
    if reset_logger:
        log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
        reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir)
    else:
        logger.info(f'Starting evaluation for instance {instance.instance_id}.')

    problem_statement, dataset_metadata = get_dv_query_for_real(
        datasets=instance.datasets,
        question=instance.query,
        domain_knowledge=instance.domain_knowledge,
        workflow_tags=instance.workflow_tags,
    )

    # Prepare instruction
    instruction = (
        f'You are a discovery agent who can execute a python code only once to answer a query based on one or more datasets. The datasets will be present in the current directory.\n\n'
        'Environment has been set up for you to start working. You may assume all necessary tools and datasets are installed.\n\n'
        '# Problem Statement\n'
        f'{problem_statement}\n\n'
    )
    instruction += (
        'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
        'You should NOT modify any existing test case files. If needed, you can add new test cases in a NEW file to reproduce the issue.\n'
        'You SHOULD INCLUDE PROPER INDENTATION in your edit commands.\n'
    )
    # NOTE: You can actually set slightly different instruction for different agents
    instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class]

    # Here's how you can run the agent (similar to the `main` function) and get the final task state
    runtime = create_runtime(config)
    call_async_from_sync(runtime.connect)
    initialize_runtime(runtime, instance.data_files)

    state: State | None = asyncio.run(
        run_controller(
            config=config,
            initial_user_action=MessageAction(content=instruction),
            runtime=runtime,
            fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get(
                metadata.agent_class
            ),
        )
    )

    if state is None:
        raise ValueError('State should not be None.')

    metrics = state.metrics.get() if state.metrics else None
    test_result = complete_runtime(state)

    # history is now available as a stream of events, rather than list of pairs of (Action, Observation)
    # for compatibility with the existing output format, we can remake the pairs here
    # remove when it becomes unnecessary
    histories = compatibility_for_eval_history_pairs(state.history)

    # DiscoveryBench Evaluation
    eval_rec = run_eval_gold_vs_gen_NL_hypo_workflow(
        query=instance.query,
        gold_hypo=instance.gold_hypo,
        gold_workflow='',
        gen_hypo=test_result['gen_hypo'],
        gen_workflow='',
        dataset_meta=instance.dataset_metadata,
        llm_used=EVALUATION_LLM,
        dataset_type='real',
    )

    test_result['eval_rec'] = eval_rec

    output = EvalOutput(
        instance_id=str(instance.instance_id),
        instruction=instruction,
        metadata=metadata,
        history=histories,
        metrics=metrics,
        error=state.last_error if state and state.last_error else None,
        test_result=test_result,
    )

    return output


def update_csv_name(name):
    name = name.replace('-', '_')

    if 'meta_regression' in name:
        name = name.replace('meta_regression', 'meta-regression')
    if 'ML_enabled' in name:
        name = name.replace('ML_enabled', 'ML-enabled')

    return name


def list_csv_files(list_of_datasets):
    res = []
    for ele in list_of_datasets:
        for key, value in ele.items():
            if key == 'name':
                csv_file_name = update_csv_name(value)
                res.append(DATA_FILES[csv_file_name])
    return res


def create_dataset(repo_location: str, split: str = 'test'):
    """

    Create a dataset from the discoverybench repository

    by walking through the repository and extracting metadata

    from the metadata_{}.json files



    Args:

        repo_location: Location of the repository

        split: Split of the dataset to use



    Returns:

        df: DataFrame containing the dataset instances

    """

    data_dict = {}

    data_location = os.path.join(repo_location, 'discoverybench', 'real', split)
    answer_key_location = os.path.join(repo_location, 'eval', 'answer_key_real.csv')

    idx = 0

    for root, dirs, files in os.walk(data_location):
        for file in files:
            if file.endswith('.json'):
                if 'metadata' in file:
                    metadata = json.load(open(os.path.join(root, file)))

                    dataset = root.split('/')[-1]
                    metadata_id = file.split('_')[-1].split('.')[0]
                    domain = metadata.get('domain', '')
                    domain_knowledge = metadata.get('domain_knowledge', '')
                    workflow_tags = metadata.get('workflow_tags', '')
                    datasets = metadata.get('datasets', [])
                    queries = metadata.get('queries', [])
                    gold_workflow = metadata.get('workflow')

                    # loop through queries list to get queries
                    # and each query has qid; add that to dictionary
                    for query in queries[0]:
                        qid = query.get('qid', '')

                        data = {
                            'dataset': dataset,
                            'metadata_id': metadata_id,
                            'qid': qid,
                            'domain': domain,
                            'domain_knowledge': domain_knowledge,
                            'workflow_tags': workflow_tags,
                            'datasets': datasets,
                            'question_type': query['question_type'],
                            'query': query['question'],
                            'gold_workflow': gold_workflow,
                            'dataset_metadata': metadata,
                        }

                        data_dict[idx] = data
                        idx += 1

            if file.endswith('.csv'):
                DATA_FILES[file] = os.path.join(root, file)
            if file.endswith('.txt'):
                DATA_FILES[file] = os.path.join(root, file)

    df = pd.DataFrame.from_dict(data_dict, orient='index')

    df['instance_id'] = df.index

    df['data_files'] = df['datasets'].apply(lambda x: list_csv_files(x))

    answer_key = pd.read_csv(answer_key_location)

    answer_key = answer_key.rename(
        columns={
            'metadataid': 'metadata_id',
            'query_id': 'qid',
            'gold_hypothesis': 'gold_hypothesis',
        }
    )

    df['qid'] = df['qid'].astype(int)
    df['metadata_id'] = df['metadata_id'].astype(int)

    answer_key['qid'] = answer_key['qid'].astype(int)
    answer_key['metadata_id'] = answer_key['metadata_id'].astype(int)

    df = pd.merge(df, answer_key, on=['dataset', 'metadata_id', 'qid'], how='left')

    return df


if __name__ == '__main__':
    args = parse_arguments()

    # clone git repositor for csv files
    repo_url = 'https://github.com/allenai/discoverybench.git'
    repo_location = 'git-discoverybench-allenai'

    try:
        git.Repo.clone_from(repo_url, repo_location)
    except git.exc.GitCommandError:
        print('Repository already exists')

    dataset = create_dataset(repo_location)

    # check if there is any empty csv_file
    if dataset['data_files'].isnull().any():
        raise ValueError('Some csv files are missing.')

    llm_config = None
    if args.llm_config:
        llm_config = get_llm_config_arg(args.llm_config)
        # modify_params must be False for evaluation purpose, for reproducibility and accurancy of results
        llm_config.modify_params = False
    if llm_config is None:
        raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')

    metadata = make_metadata(
        llm_config,
        'discoverybench-python',
        args.agent_cls,
        args.max_iterations,
        args.eval_note,
        args.eval_output_dir,
    )
    output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
    instances = prepare_dataset(dataset, output_file, args.eval_n_limit)

    run_evaluation(
        instances,
        metadata,
        output_file,
        args.eval_num_workers,
        process_instance,
    )