File size: 16,753 Bytes
246d201 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
import asyncio
import json
import os
import git
import pandas as pd
from evaluation.benchmarks.discoverybench.eval_utils.eval_w_subhypo_gen import (
run_eval_gold_vs_gen_NL_hypo_workflow,
)
from evaluation.benchmarks.discoverybench.eval_utils.response_parser import (
extract_gen_hypo_from_logs,
)
from evaluation.utils.shared import (
EvalMetadata,
EvalOutput,
codeact_user_response,
compatibility_for_eval_history_pairs,
make_metadata,
prepare_dataset,
reset_logger_for_multiprocessing,
run_evaluation,
)
from openhands.controller.state.state import State
from openhands.core.config import (
AgentConfig,
AppConfig,
SandboxConfig,
get_llm_config_arg,
parse_arguments,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.events.action import AgentFinishAction, CmdRunAction, MessageAction
from openhands.events.observation import CmdOutputObservation
from openhands.runtime.base import Runtime
from openhands.utils.async_utils import call_async_from_sync
EVALUATION_LLM = 'gpt-4-1106-preview'
DATA_FILES = {}
LIBRARIES = [
'pandas',
'numpy',
'scipy',
'matplotlib',
'seaborn',
'scikit-learn',
'statsmodels',
]
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
'CodeActAgent': codeact_user_response,
}
AGENT_CLS_TO_INST_SUFFIX = {
'CodeActAgent': 'When you think you have fixed the issue through code changes, please finish the interaction using the "finish" tool.\n'
}
def get_config(
metadata: EvalMetadata,
) -> AppConfig:
config = AppConfig(
default_agent=metadata.agent_class,
run_as_openhands=False,
runtime='docker',
max_iterations=metadata.max_iterations,
sandbox=SandboxConfig(
base_container_image='python:3.12-bookworm',
enable_auto_lint=True,
use_host_network=False,
),
# do not mount workspace
workspace_base=None,
workspace_mount_path=None,
)
config.set_llm_config(metadata.llm_config)
agent_config = config.get_agent_config(metadata.agent_class)
agent_config.enable_prompt_extensions = False
agent_config = AgentConfig(
function_calling=False,
codeact_enable_jupyter=True,
codeact_enable_browsing_delegate=True,
)
config.set_agent_config(agent_config)
return config
def get_dv_query_for_real(
datasets, question, domain_knowledge=None, workflow_tags=None
):
"""
Prepare a structured query for the agent to execute on the specified datasets.
This function constructs a query by compiling metadata from the provided datasets, along with any relevant domain knowledge and workflow tags.
Args:
datasets: List of datasets
question: Query to be answered
domain_knowledge: Domain knowledge if any
workflow_tags: Workflow tags if any
Returns:
query_to_dv: Query to be run on the dataset
dataset_meta: Metadata of the dataset
"""
dataset_meta = ''
for dataset_metadata in datasets:
dataset_meta += 'Dataset name: ' + dataset_metadata['name']
dataset_meta += 'Dataset description: ' + dataset_metadata['description']
dataset_meta += '\nBrief description of columns: '
for col in dataset_metadata['columns']['raw']:
dataset_meta += col['name'] + ': ' + col['description'] + ', '
query_to_dv = dataset_meta
query_to_dv += f'\nQuery: {question}'
if domain_knowledge:
query_to_dv += (
'\nAdditionally, we provide some hints that might be useful to solve the task. Domain Knowledge: \n'
+ domain_knowledge
+ '.\n'
)
if workflow_tags:
query_to_dv += 'The meta tags are: ' + workflow_tags + '.\n'
query_to_dv += (
'In the final answer, please write down a scientific hypothesis in '
'natural language, derived from the provided dataset, clearly stating the '
'context of hypothesis (if any), variables chosen (if any) and '
'relationship between those variables (if any) including any statistical significance.'
'Also generate a summary of the full workflow starting from data loading that led to the final answer as WORKFLOW SUMMARY:'
)
# Run the NL query through datavoyager
return query_to_dv, dataset_meta
def initialize_runtime(runtime: Runtime, data_files: list[str]):
"""
Initialize the runtime for the agent.
This function is called before the runtime is used to run the agent.
"""
logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
obs: CmdOutputObservation
action = CmdRunAction(command='mkdir -p /workspace')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
assert obs.exit_code == 0
action = CmdRunAction(command='cd /workspace')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
assert obs.exit_code == 0
for file in data_files:
runtime.copy_to(
file,
'/workspace',
)
for lib in LIBRARIES:
action = CmdRunAction(command=f'pip install {lib}')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
assert obs.exit_code == 0
logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
def get_last_agent_finish_action(state: State) -> AgentFinishAction:
for event in reversed(state.history):
if isinstance(event, AgentFinishAction):
return event
return None
def get_last_message_action(state: State) -> MessageAction:
for event in reversed(state.history):
if isinstance(event, MessageAction):
return event
return None
def complete_runtime(state: State):
last_agent_finish_action = get_last_agent_finish_action(state)
last_agent_message_action = get_last_message_action(state)
if last_agent_finish_action is not None:
final_message_1 = last_agent_finish_action.thought
gen_hypo_1, gen_workflow_1, error_1 = extract_gen_hypo_from_logs(
final_message_1
)
else:
gen_hypo_1, gen_workflow_1, error_1 = '', '', ''
if last_agent_message_action is not None:
final_message_2 = last_agent_message_action.content
gen_hypo_2, gen_workflow_2, error_2 = extract_gen_hypo_from_logs(
final_message_2
)
else:
gen_hypo_2, gen_workflow_2, error_2 = '', '', ''
if gen_hypo_1 and gen_hypo_2:
test_result = {
'gen_hypo': last_agent_finish_action.thought
if last_agent_finish_action
else last_agent_message_action.content,
'gen_workflow': '',
'error': '',
}
return test_result
test_result = {
'gen_hypo': gen_hypo_1 if gen_hypo_1 else gen_hypo_2,
'gen_workflow': gen_workflow_1 if gen_workflow_1 else gen_workflow_2,
'error': error_1 if error_1 else error_2,
}
return test_result
def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
):
"""
Process and evaluate a single instance of the dataset.
This function executes the OpenHands agent
for a specific instance of the dataset. It retrieves
the agent's results and evaluates them against the gold
hypothesis.
Args:
instance: A single row of the dataset
metadata: Metadata for the evaluation
reset_logger: Whether to reset the logger
Returns:
output: EvalOutput object
"""
config = get_config(metadata)
# Setup the logger properly, so you can run
# multi-processing to parallelize the evaluation
if reset_logger:
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir)
else:
logger.info(f'Starting evaluation for instance {instance.instance_id}.')
problem_statement, dataset_metadata = get_dv_query_for_real(
datasets=instance.datasets,
question=instance.query,
domain_knowledge=instance.domain_knowledge,
workflow_tags=instance.workflow_tags,
)
# Prepare instruction
instruction = (
f'You are a discovery agent who can execute a python code only once to answer a query based on one or more datasets. The datasets will be present in the current directory.\n\n'
'Environment has been set up for you to start working. You may assume all necessary tools and datasets are installed.\n\n'
'# Problem Statement\n'
f'{problem_statement}\n\n'
)
instruction += (
'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
'You should NOT modify any existing test case files. If needed, you can add new test cases in a NEW file to reproduce the issue.\n'
'You SHOULD INCLUDE PROPER INDENTATION in your edit commands.\n'
)
# NOTE: You can actually set slightly different instruction for different agents
instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class]
# Here's how you can run the agent (similar to the `main` function) and get the final task state
runtime = create_runtime(config)
call_async_from_sync(runtime.connect)
initialize_runtime(runtime, instance.data_files)
state: State | None = asyncio.run(
run_controller(
config=config,
initial_user_action=MessageAction(content=instruction),
runtime=runtime,
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get(
metadata.agent_class
),
)
)
if state is None:
raise ValueError('State should not be None.')
metrics = state.metrics.get() if state.metrics else None
test_result = complete_runtime(state)
# history is now available as a stream of events, rather than list of pairs of (Action, Observation)
# for compatibility with the existing output format, we can remake the pairs here
# remove when it becomes unnecessary
histories = compatibility_for_eval_history_pairs(state.history)
# DiscoveryBench Evaluation
eval_rec = run_eval_gold_vs_gen_NL_hypo_workflow(
query=instance.query,
gold_hypo=instance.gold_hypo,
gold_workflow='',
gen_hypo=test_result['gen_hypo'],
gen_workflow='',
dataset_meta=instance.dataset_metadata,
llm_used=EVALUATION_LLM,
dataset_type='real',
)
test_result['eval_rec'] = eval_rec
output = EvalOutput(
instance_id=str(instance.instance_id),
instruction=instruction,
metadata=metadata,
history=histories,
metrics=metrics,
error=state.last_error if state and state.last_error else None,
test_result=test_result,
)
return output
def update_csv_name(name):
name = name.replace('-', '_')
if 'meta_regression' in name:
name = name.replace('meta_regression', 'meta-regression')
if 'ML_enabled' in name:
name = name.replace('ML_enabled', 'ML-enabled')
return name
def list_csv_files(list_of_datasets):
res = []
for ele in list_of_datasets:
for key, value in ele.items():
if key == 'name':
csv_file_name = update_csv_name(value)
res.append(DATA_FILES[csv_file_name])
return res
def create_dataset(repo_location: str, split: str = 'test'):
"""
Create a dataset from the discoverybench repository
by walking through the repository and extracting metadata
from the metadata_{}.json files
Args:
repo_location: Location of the repository
split: Split of the dataset to use
Returns:
df: DataFrame containing the dataset instances
"""
data_dict = {}
data_location = os.path.join(repo_location, 'discoverybench', 'real', split)
answer_key_location = os.path.join(repo_location, 'eval', 'answer_key_real.csv')
idx = 0
for root, dirs, files in os.walk(data_location):
for file in files:
if file.endswith('.json'):
if 'metadata' in file:
metadata = json.load(open(os.path.join(root, file)))
dataset = root.split('/')[-1]
metadata_id = file.split('_')[-1].split('.')[0]
domain = metadata.get('domain', '')
domain_knowledge = metadata.get('domain_knowledge', '')
workflow_tags = metadata.get('workflow_tags', '')
datasets = metadata.get('datasets', [])
queries = metadata.get('queries', [])
gold_workflow = metadata.get('workflow')
# loop through queries list to get queries
# and each query has qid; add that to dictionary
for query in queries[0]:
qid = query.get('qid', '')
data = {
'dataset': dataset,
'metadata_id': metadata_id,
'qid': qid,
'domain': domain,
'domain_knowledge': domain_knowledge,
'workflow_tags': workflow_tags,
'datasets': datasets,
'question_type': query['question_type'],
'query': query['question'],
'gold_workflow': gold_workflow,
'dataset_metadata': metadata,
}
data_dict[idx] = data
idx += 1
if file.endswith('.csv'):
DATA_FILES[file] = os.path.join(root, file)
if file.endswith('.txt'):
DATA_FILES[file] = os.path.join(root, file)
df = pd.DataFrame.from_dict(data_dict, orient='index')
df['instance_id'] = df.index
df['data_files'] = df['datasets'].apply(lambda x: list_csv_files(x))
answer_key = pd.read_csv(answer_key_location)
answer_key = answer_key.rename(
columns={
'metadataid': 'metadata_id',
'query_id': 'qid',
'gold_hypothesis': 'gold_hypothesis',
}
)
df['qid'] = df['qid'].astype(int)
df['metadata_id'] = df['metadata_id'].astype(int)
answer_key['qid'] = answer_key['qid'].astype(int)
answer_key['metadata_id'] = answer_key['metadata_id'].astype(int)
df = pd.merge(df, answer_key, on=['dataset', 'metadata_id', 'qid'], how='left')
return df
if __name__ == '__main__':
args = parse_arguments()
# clone git repositor for csv files
repo_url = 'https://github.com/allenai/discoverybench.git'
repo_location = 'git-discoverybench-allenai'
try:
git.Repo.clone_from(repo_url, repo_location)
except git.exc.GitCommandError:
print('Repository already exists')
dataset = create_dataset(repo_location)
# check if there is any empty csv_file
if dataset['data_files'].isnull().any():
raise ValueError('Some csv files are missing.')
llm_config = None
if args.llm_config:
llm_config = get_llm_config_arg(args.llm_config)
# modify_params must be False for evaluation purpose, for reproducibility and accurancy of results
llm_config.modify_params = False
if llm_config is None:
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
metadata = make_metadata(
llm_config,
'discoverybench-python',
args.agent_cls,
args.max_iterations,
args.eval_note,
args.eval_output_dir,
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
instances = prepare_dataset(dataset, output_file, args.eval_n_limit)
run_evaluation(
instances,
metadata,
output_file,
args.eval_num_workers,
process_instance,
)
|