File size: 8,014 Bytes
246d201 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import asyncio
import json
import os
import pandas as pd
import requests
from evaluation.benchmarks.gorilla.utils import encode_question, get_data_for_hub
from evaluation.utils.shared import (
EvalMetadata,
EvalOutput,
codeact_user_response,
compatibility_for_eval_history_pairs,
make_metadata,
prepare_dataset,
reset_logger_for_multiprocessing,
run_evaluation,
)
from openhands.controller.state.state import State
from openhands.core.config import (
AppConfig,
SandboxConfig,
get_llm_config_arg,
get_parser,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.events.action import MessageAction
from openhands.utils.async_utils import call_async_from_sync
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
'CodeActAgent': codeact_user_response,
}
AGENT_CLS_TO_INST_SUFFIX = {
'CodeActAgent': 'When you think you have completed the request, please finish the interaction using the "finish" tool.\n'
}
def get_config(
metadata: EvalMetadata,
) -> AppConfig:
config = AppConfig(
default_agent=metadata.agent_class,
run_as_openhands=False,
runtime='docker',
max_iterations=metadata.max_iterations,
sandbox=SandboxConfig(
base_container_image='python:3.12-bookworm',
enable_auto_lint=True,
use_host_network=False,
),
# do not mount workspace
workspace_base=None,
workspace_mount_path=None,
)
config.set_llm_config(metadata.llm_config)
agent_config = config.get_agent_config(metadata.agent_class)
agent_config.enable_prompt_extensions = False
return config
def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
) -> EvalOutput:
config = get_config(metadata)
instance_id = instance['question_id']
question = instance['question']
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
if reset_logger:
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
reset_logger_for_multiprocessing(logger, instance_id, log_dir)
else:
logger.info(f'Starting evaluation for instance {instance_id}.')
# Prepare instruction
instruction = encode_question(question, instance['hub'])
instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
# NOTE: You can actually set slightly different instruction for different agents
instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class]
# logger.info(f'Instruction:\n{instruction}', extra={'msg_type': 'OBSERVATION'})
# Here's how you can run the agent (similar to the `main` function) and get the final task state
runtime = create_runtime(config)
call_async_from_sync(runtime.connect)
state: State | None = asyncio.run(
run_controller(
config=config,
initial_user_action=MessageAction(content=instruction),
runtime=runtime,
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get(
metadata.agent_class
),
)
)
# ======= Attempt to evaluate the agent's edits =======
# If you are working on simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
if state is None:
raise ValueError('State should not be None.')
# retrieve the last message from the agent
last_agent_message = state.get_last_agent_message()
model_answer_raw = last_agent_message.content if last_agent_message else ''
# attempt to parse model_answer
ast_eval_fn = instance['ast_eval']
correct, hallucination = ast_eval_fn(instance_id, model_answer_raw)
metrics = state.metrics.get() if state.metrics else None
logger.info(
f'Final message: {model_answer_raw} | Correctness: {correct} | Hallucination: {hallucination}'
)
# history is now available as a stream of events, rather than list of pairs of (Action, Observation)
# for compatibility with the existing output format, we can remake the pairs here
# remove when it becomes unnecessary
histories = compatibility_for_eval_history_pairs(state.history)
output = EvalOutput(
instance_id=instance_id,
metadata=metadata,
history=histories,
metrics=metrics,
error=state.last_error if state and state.last_error else None,
test_result={
'text': model_answer_raw,
'correct': correct,
'hallucination': hallucination,
},
)
return output
if __name__ == '__main__':
parser = get_parser()
parser.add_argument(
'--hubs',
type=str,
help='Which hubs to evaluate from APIBench. APIBench contains 3 hubs, namely huggingface, torch, and tensorflow. You could choose one or more from hf, torch, or tf, separated by commas. For example, the default is --hub hf,torch,tf.',
default='hf,torch,tf',
)
args, _ = parser.parse_known_args()
llm_config = None
if args.llm_config:
llm_config = get_llm_config_arg(args.llm_config)
# modify_params must be False for evaluation purpose, for reproducibility and accurancy of results
llm_config.modify_params = False
if llm_config is None:
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
hubs = args.hubs.split(',')
if len(hubs) == 0:
raise ValueError('Please choose at least one from hf, torch, and tf for hubs.')
dfs = []
for hub in hubs:
logger.info(f'Evaluating APIBench {hub} test')
df = get_data_for_hub(hub)
dfs.append(df)
dataset_df = pd.concat(dfs)
dataset_df.rename(columns={'question_id': 'instance_id'}, inplace=True)
metadata = make_metadata(
llm_config=llm_config,
dataset_name=f'gorilla-{hub}',
agent_class=args.agent_cls,
max_iterations=args.max_iterations,
eval_note=args.eval_note,
eval_output_dir=args.eval_output_dir,
data_split=args.data_split,
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
dataset = prepare_dataset(
dataset_df, output_file=output_file, eval_n_limit=args.eval_n_limit
)
file_path = os.path.join(os.path.dirname(__file__), 'my-languages.so')
# Check if the file exists
if not os.path.exists(file_path):
url = 'https://raw.githubusercontent.com/ShishirPatil/gorilla/main/eval/eval-scripts/codebleu/parser/my-languages.so'
response = requests.get(url)
with open(file_path, 'wb') as f:
f.write(response.content)
else:
print('File already exists, skipping download.')
run_evaluation(
dataset=dataset,
metadata=metadata,
output_file=output_file,
num_workers=args.eval_num_workers,
process_instance_func=process_instance,
)
# Read the output file and calculate the accuracy
total_correct = 0
total_hallucination = 0
output = []
with open(output_file, 'r') as f:
for line in f:
data = json.loads(line)
if data['test_result']['correct']:
total_correct += 1
if data['test_result']['hallucination']:
total_hallucination += 1
output.append(data)
logger.info(
f'Evaluation finished for {hub}. Total: {len(output)}; Correct: {total_correct}; Hallucination: {total_hallucination}. Accuracy: {total_correct / len(output)}'
)
|