File size: 10,100 Bytes
246d201 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import asyncio
import os
from typing import Any
import pandas as pd
from datasets import load_dataset
from tqdm import tqdm
from evaluation.utils.shared import (
EvalMetadata,
EvalOutput,
codeact_user_response,
compatibility_for_eval_history_pairs,
make_metadata,
prepare_dataset,
reset_logger_for_multiprocessing,
run_evaluation,
update_llm_config_for_completions_logging,
)
from openhands.controller.state.state import State
from openhands.core.config import (
AppConfig,
SandboxConfig,
get_llm_config_arg,
get_parser,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.events.action import CmdRunAction, MessageAction
from openhands.events.observation import CmdOutputObservation
from openhands.runtime.base import Runtime
from openhands.utils.async_utils import call_async_from_sync
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
'CodeActAgent': codeact_user_response,
}
LOCAL_DATASET_PATH = os.path.join(os.path.dirname(__file__), 'benchmark')
def format_task_dict(example, use_knowledge):
task = {
'instance_id': example['instance_id'],
'task_inst': example['task_inst'],
'dataset_path': '/benchmark/datasets/'
+ example['dataset_folder_tree'].split('\n')[0][4:],
'dataset_folder_tree': example['dataset_folder_tree'],
'dataset_preview': example['dataset_preview'],
'pred_program_name': 'pred_' + example['gold_program_name'],
}
if use_knowledge:
task['task_inst'] += '\n' + str(example['domain_knowledge'])
return task
def get_config(
metadata: EvalMetadata,
instance_id: str,
) -> AppConfig:
config = AppConfig(
default_agent=metadata.agent_class,
run_as_openhands=False,
runtime=os.environ.get('RUNTIME', 'docker'),
max_budget_per_task=4,
max_iterations=metadata.max_iterations,
sandbox=SandboxConfig(
base_container_image='docker.io/xingyaoww/openhands-eval-scienceagentbench',
enable_auto_lint=True,
use_host_network=False,
timeout=300,
api_key=os.environ.get('ALLHANDS_API_KEY', None),
remote_runtime_api_url=os.environ.get('SANDBOX_REMOTE_RUNTIME_API_URL'),
keep_runtime_alive=False,
),
# do not mount workspace
workspace_base=None,
workspace_mount_path=None,
)
config.set_llm_config(
update_llm_config_for_completions_logging(
metadata.llm_config,
metadata.eval_output_dir,
instance_id,
)
)
return config
def initialize_runtime(
runtime: Runtime,
instance: pd.Series, # this argument is not required
):
"""Initialize the runtime for the agent.
This function is called before the runtime is used to run the agent.
"""
logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
obs: CmdOutputObservation
# Set up workspace directories
action = CmdRunAction(command='mkdir -p /workspace/pred_programs')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
assert obs.exit_code == 0
action = CmdRunAction(command='mkdir -p /workspace/pred_results')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
assert obs.exit_code == 0
dataset_name = instance['dataset_folder_tree'].split('\n')[0][4:].rstrip('/')
# Copy the dataset to the workspace
dataset_dir = os.path.join(
LOCAL_DATASET_PATH,
'datasets',
dataset_name,
)
runtime.copy_to(dataset_dir, '/workspace/benchmark/datasets', recursive=True)
# Check the dataset exists
action = CmdRunAction(command='cd /workspace/benchmark/datasets && ls')
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert obs.exit_code == 0
assert dataset_name in obs.content
logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
def complete_runtime(
runtime: Runtime,
instance: pd.Series,
) -> dict[str, Any]:
"""Complete the runtime for the agent.
This function is called before the runtime is used to run the agent.
If you need to do something in the sandbox to get the correctness metric after
the agent has run, modify this function.
"""
logger.info(f"{'-' * 50} BEGIN Runtime Completion Fn {'-' * 50}")
obs: CmdOutputObservation
test_result = {}
action = CmdRunAction(command='cd /workspace')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
assert obs.exit_code == 0
action = CmdRunAction(command=f'cat pred_programs/{instance.pred_program_name}')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
if obs.exit_code == 0:
test_result = {'program': obs.content}
else:
test_result = {'program': 'ERROR'}
logger.info(f"{'-' * 50} END Runtime Completion Fn {'-' * 50}")
return test_result
def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
) -> EvalOutput:
instance_id = instance.instance_id.replace('/', '__')
config = get_config(metadata, instance_id)
# Set up the logger properly, so you can run multi-processing to parallelize the evaluation
if reset_logger:
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
reset_logger_for_multiprocessing(logger, instance_id, log_dir)
else:
logger.info(f'Starting evaluation for instance {instance_id}.')
instruction = f"""You are an expert Python programming assistant that helps scientist users to write high-quality code to solve their tasks.
Given a user request, you are expected to write a complete program that accomplishes the requested task and save any outputs to `/workspace/pred_results/` in the correct format.
Here's the user request you need to work on:
{instance.task_inst}
You can access the dataset at `{instance.dataset_path}`. Here is the directory structure of the dataset:
```
{instance.dataset_folder_tree}
```
Here are some helpful previews for the dataset file(s):
{instance.dataset_preview}
Please save your program as `/workspace/pred_programs/{instance.pred_program_name}`.
Then, please run the program to check and fix any errors.
Please do NOT run the program in the background.
If the program uses some packages that are incompatible, please figure out alternative implementations and do NOT restart the environment.
"""
runtime = create_runtime(config)
call_async_from_sync(runtime.connect)
initialize_runtime(runtime, instance)
# Here's how you can run the agent (similar to the `main` function) and get the final task state
state: State | None = asyncio.run(
run_controller(
config=config,
initial_user_action=MessageAction(content=instruction),
runtime=runtime,
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get(
metadata.agent_class
),
)
)
# ======= Attempt to evaluate the agent's edits =======
test_result = complete_runtime(runtime, instance)
# If you are working on some simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
if state is None:
raise ValueError('State should not be None.')
metrics = state.metrics.get() if state.metrics else None
# history is now available as a stream of events, rather than list of pairs of (Action, Observation)
# for compatibility with the existing output format, we can remake the pairs here
# remove when it becomes unnecessary
histories = compatibility_for_eval_history_pairs(state.history)
# Save the output
output = EvalOutput(
instance_id=instance.instance_id,
instruction=instruction,
metadata=metadata,
history=histories,
metrics=metrics,
error=state.last_error if state and state.last_error else None,
test_result=test_result,
)
return output
if __name__ == '__main__':
parser = get_parser()
parser.add_argument(
'--use-knowledge',
type=str,
default='false',
choices=['true', 'false'],
help='use expert-provided knowledge or not',
)
args, _ = parser.parse_known_args()
sab_dataset = load_dataset('osunlp/ScienceAgentBench', split='validation')
dataset_processed = []
for example in tqdm(sab_dataset):
dataset_processed.append(
format_task_dict(example, args.use_knowledge == 'true')
)
dataset = pd.DataFrame(dataset_processed)
llm_config = None
if args.llm_config:
llm_config = get_llm_config_arg(args.llm_config)
# modify_params must be False for evaluation purpose, for reproducibility and accurancy of results
llm_config.modify_params = False
if llm_config is None:
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
metadata = make_metadata(
llm_config,
'ScienceAgentBench',
args.agent_cls,
args.max_iterations,
args.eval_note,
args.eval_output_dir,
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
dataset['instance_id'] = dataset['instance_id'].apply(str)
instances = prepare_dataset(dataset, output_file, args.eval_n_limit)
run_evaluation(
instances, metadata, output_file, args.eval_num_workers, process_instance
)
|