File size: 10,100 Bytes
246d201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import asyncio
import os
from typing import Any

import pandas as pd
from datasets import load_dataset
from tqdm import tqdm

from evaluation.utils.shared import (
    EvalMetadata,
    EvalOutput,
    codeact_user_response,
    compatibility_for_eval_history_pairs,
    make_metadata,
    prepare_dataset,
    reset_logger_for_multiprocessing,
    run_evaluation,
    update_llm_config_for_completions_logging,
)
from openhands.controller.state.state import State
from openhands.core.config import (
    AppConfig,
    SandboxConfig,
    get_llm_config_arg,
    get_parser,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.events.action import CmdRunAction, MessageAction
from openhands.events.observation import CmdOutputObservation
from openhands.runtime.base import Runtime
from openhands.utils.async_utils import call_async_from_sync

AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
    'CodeActAgent': codeact_user_response,
}

LOCAL_DATASET_PATH = os.path.join(os.path.dirname(__file__), 'benchmark')


def format_task_dict(example, use_knowledge):
    task = {
        'instance_id': example['instance_id'],
        'task_inst': example['task_inst'],
        'dataset_path': '/benchmark/datasets/'
        + example['dataset_folder_tree'].split('\n')[0][4:],
        'dataset_folder_tree': example['dataset_folder_tree'],
        'dataset_preview': example['dataset_preview'],
        'pred_program_name': 'pred_' + example['gold_program_name'],
    }

    if use_knowledge:
        task['task_inst'] += '\n' + str(example['domain_knowledge'])

    return task


def get_config(

    metadata: EvalMetadata,

    instance_id: str,

) -> AppConfig:
    config = AppConfig(
        default_agent=metadata.agent_class,
        run_as_openhands=False,
        runtime=os.environ.get('RUNTIME', 'docker'),
        max_budget_per_task=4,
        max_iterations=metadata.max_iterations,
        sandbox=SandboxConfig(
            base_container_image='docker.io/xingyaoww/openhands-eval-scienceagentbench',
            enable_auto_lint=True,
            use_host_network=False,
            timeout=300,
            api_key=os.environ.get('ALLHANDS_API_KEY', None),
            remote_runtime_api_url=os.environ.get('SANDBOX_REMOTE_RUNTIME_API_URL'),
            keep_runtime_alive=False,
        ),
        # do not mount workspace
        workspace_base=None,
        workspace_mount_path=None,
    )
    config.set_llm_config(
        update_llm_config_for_completions_logging(
            metadata.llm_config,
            metadata.eval_output_dir,
            instance_id,
        )
    )
    return config


def initialize_runtime(

    runtime: Runtime,

    instance: pd.Series,  # this argument is not required

):
    """Initialize the runtime for the agent.



    This function is called before the runtime is used to run the agent.

    """
    logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
    obs: CmdOutputObservation

    # Set up workspace directories
    action = CmdRunAction(command='mkdir -p /workspace/pred_programs')
    logger.info(action, extra={'msg_type': 'ACTION'})
    obs = runtime.run_action(action)
    assert obs.exit_code == 0

    action = CmdRunAction(command='mkdir -p /workspace/pred_results')
    logger.info(action, extra={'msg_type': 'ACTION'})
    obs = runtime.run_action(action)
    assert obs.exit_code == 0

    dataset_name = instance['dataset_folder_tree'].split('\n')[0][4:].rstrip('/')

    # Copy the dataset to the workspace
    dataset_dir = os.path.join(
        LOCAL_DATASET_PATH,
        'datasets',
        dataset_name,
    )
    runtime.copy_to(dataset_dir, '/workspace/benchmark/datasets', recursive=True)

    # Check the dataset exists
    action = CmdRunAction(command='cd /workspace/benchmark/datasets && ls')
    obs = runtime.run_action(action)
    logger.info(obs, extra={'msg_type': 'OBSERVATION'})
    assert obs.exit_code == 0
    assert dataset_name in obs.content

    logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")


def complete_runtime(

    runtime: Runtime,

    instance: pd.Series,

) -> dict[str, Any]:
    """Complete the runtime for the agent.



    This function is called before the runtime is used to run the agent.

    If you need to do something in the sandbox to get the correctness metric after

    the agent has run, modify this function.

    """
    logger.info(f"{'-' * 50} BEGIN Runtime Completion Fn {'-' * 50}")
    obs: CmdOutputObservation

    test_result = {}

    action = CmdRunAction(command='cd /workspace')
    logger.info(action, extra={'msg_type': 'ACTION'})
    obs = runtime.run_action(action)

    assert obs.exit_code == 0

    action = CmdRunAction(command=f'cat pred_programs/{instance.pred_program_name}')
    logger.info(action, extra={'msg_type': 'ACTION'})
    obs = runtime.run_action(action)

    if obs.exit_code == 0:
        test_result = {'program': obs.content}
    else:
        test_result = {'program': 'ERROR'}

    logger.info(f"{'-' * 50} END Runtime Completion Fn {'-' * 50}")
    return test_result


def process_instance(

    instance: pd.Series,

    metadata: EvalMetadata,

    reset_logger: bool = True,

) -> EvalOutput:
    instance_id = instance.instance_id.replace('/', '__')
    config = get_config(metadata, instance_id)

    # Set up the logger properly, so you can run multi-processing to parallelize the evaluation
    if reset_logger:
        log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
        reset_logger_for_multiprocessing(logger, instance_id, log_dir)
    else:
        logger.info(f'Starting evaluation for instance {instance_id}.')

    instruction = f"""You are an expert Python programming assistant that helps scientist users to write high-quality code to solve their tasks.

Given a user request, you are expected to write a complete program that accomplishes the requested task and save any outputs to `/workspace/pred_results/` in the correct format.



Here's the user request you need to work on:

{instance.task_inst}



You can access the dataset at `{instance.dataset_path}`. Here is the directory structure of the dataset:

```

{instance.dataset_folder_tree}

```

Here are some helpful previews for the dataset file(s):

{instance.dataset_preview}



Please save your program as `/workspace/pred_programs/{instance.pred_program_name}`.

Then, please run the program to check and fix any errors.

Please do NOT run the program in the background.

If the program uses some packages that are incompatible, please figure out alternative implementations and do NOT restart the environment.



"""

    runtime = create_runtime(config)
    call_async_from_sync(runtime.connect)
    initialize_runtime(runtime, instance)

    # Here's how you can run the agent (similar to the `main` function) and get the final task state
    state: State | None = asyncio.run(
        run_controller(
            config=config,
            initial_user_action=MessageAction(content=instruction),
            runtime=runtime,
            fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get(
                metadata.agent_class
            ),
        )
    )

    # ======= Attempt to evaluate the agent's edits =======
    test_result = complete_runtime(runtime, instance)

    # If you are working on some simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
    # You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
    if state is None:
        raise ValueError('State should not be None.')
    metrics = state.metrics.get() if state.metrics else None

    # history is now available as a stream of events, rather than list of pairs of (Action, Observation)
    # for compatibility with the existing output format, we can remake the pairs here
    # remove when it becomes unnecessary
    histories = compatibility_for_eval_history_pairs(state.history)

    # Save the output
    output = EvalOutput(
        instance_id=instance.instance_id,
        instruction=instruction,
        metadata=metadata,
        history=histories,
        metrics=metrics,
        error=state.last_error if state and state.last_error else None,
        test_result=test_result,
    )
    return output


if __name__ == '__main__':
    parser = get_parser()
    parser.add_argument(
        '--use-knowledge',
        type=str,
        default='false',
        choices=['true', 'false'],
        help='use expert-provided knowledge or not',
    )
    args, _ = parser.parse_known_args()

    sab_dataset = load_dataset('osunlp/ScienceAgentBench', split='validation')

    dataset_processed = []
    for example in tqdm(sab_dataset):
        dataset_processed.append(
            format_task_dict(example, args.use_knowledge == 'true')
        )

    dataset = pd.DataFrame(dataset_processed)

    llm_config = None
    if args.llm_config:
        llm_config = get_llm_config_arg(args.llm_config)
        # modify_params must be False for evaluation purpose, for reproducibility and accurancy of results
        llm_config.modify_params = False
    if llm_config is None:
        raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')

    metadata = make_metadata(
        llm_config,
        'ScienceAgentBench',
        args.agent_cls,
        args.max_iterations,
        args.eval_note,
        args.eval_output_dir,
    )
    output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
    dataset['instance_id'] = dataset['instance_id'].apply(str)
    instances = prepare_dataset(dataset, output_file, args.eval_n_limit)

    run_evaluation(
        instances, metadata, output_file, args.eval_num_workers, process_instance
    )