File size: 19,310 Bytes
246d201 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 |
import json
import logging
import multiprocessing as mp
import os
import pathlib
import signal
import subprocess
import time
import traceback
from contextlib import contextmanager
from inspect import signature
from typing import Any, Awaitable, Callable, TextIO
import pandas as pd
from pydantic import BaseModel
from tqdm import tqdm
from openhands.controller.state.state import State
from openhands.core.config import LLMConfig
from openhands.core.config.condenser_config import (
CondenserConfig,
NoOpCondenserConfig,
)
from openhands.core.exceptions import (
AgentRuntimeBuildError,
AgentRuntimeDisconnectedError,
AgentRuntimeError,
AgentRuntimeNotFoundError,
AgentRuntimeNotReadyError,
AgentRuntimeTimeoutError,
AgentRuntimeUnavailableError,
)
from openhands.core.logger import get_console_handler
from openhands.core.logger import openhands_logger as logger
from openhands.events.action import Action
from openhands.events.action.message import MessageAction
from openhands.events.event import Event
from openhands.events.serialization.event import event_to_dict
from openhands.events.utils import get_pairs_from_events
from openhands.memory.condenser import get_condensation_metadata
class EvalMetadata(BaseModel):
agent_class: str
llm_config: LLMConfig
max_iterations: int
eval_output_dir: str
start_time: str
git_commit: str
dataset: str | None = None
data_split: str | None = None
details: dict[str, Any] | None = None
condenser_config: CondenserConfig | None = None
class EvalOutput(BaseModel):
# NOTE: User-specified
instance_id: str
# output of the evaluation
# store anything that is needed for the score calculation
test_result: dict[str, Any]
instruction: str | None = None
# Interaction info
metadata: EvalMetadata | None = None
# list[tuple[dict[str, Any], dict[str, Any]]] - for compatibility with the old format
history: (
list[dict[str, Any]] | list[tuple[dict[str, Any], dict[str, Any]]] | None
) = None
metrics: dict[str, Any] | None = None
error: str | None = None
# Optionally save the input test instance
instance: dict[str, Any] | None = None
class EvalException(Exception):
pass
class EvalTimeoutException(Exception):
pass
@contextmanager
def timeout(seconds: int):
def timeout_handler(signum, frame):
raise EvalTimeoutException(f'Function timed out after {seconds} seconds')
# Set up the signal handler
original_handler = signal.signal(signal.SIGALRM, timeout_handler)
signal.alarm(seconds)
try:
yield
finally:
# Restore the original handler and disable the alarm
signal.alarm(0)
signal.signal(signal.SIGALRM, original_handler)
def codeact_user_response(
state: State,
encapsulate_solution: bool = False,
try_parse: Callable[[Action], str] | None = None,
) -> str:
encaps_str = (
(
'Please encapsulate your final answer (answer ONLY) within <solution> and </solution>.\n'
'For example: The answer to the question is <solution> 42 </solution>.\n'
)
if encapsulate_solution
else ''
)
msg = (
'Please continue working on the task on whatever approach you think is suitable.\n'
'If you think you have solved the task, please first send your answer to user through message and then finish the interaction.\n'
f'{encaps_str}'
'IMPORTANT: YOU SHOULD NEVER ASK FOR HUMAN HELP.\n'
)
if state.history:
# check if the last action has an answer, if so, early exit
if try_parse is not None:
last_action = next(
(
event
for event in reversed(state.history)
if isinstance(event, Action)
),
None,
)
ans = try_parse(last_action)
if ans is not None:
return '/exit'
# check if the agent has tried to talk to the user 3 times, if so, let the agent know it can give up
user_msgs = [
event
for event in state.history
if isinstance(event, MessageAction) and event.source == 'user'
]
if len(user_msgs) >= 2:
# let the agent know that it can give up when it has tried 3 times
return (
msg
+ 'If you want to give up, use the "finish" tool to finish the interaction.\n'
)
return msg
def cleanup():
print('Cleaning up child processes...')
for process in mp.active_children():
print(f'Terminating child process: {process.name}')
process.terminate()
process.join()
def make_metadata(
llm_config: LLMConfig,
dataset_name: str,
agent_class: str,
max_iterations: int,
eval_note: str | None,
eval_output_dir: str,
data_split: str | None = None,
details: dict[str, Any] | None = None,
condenser_config: CondenserConfig | None = None,
) -> EvalMetadata:
model_name = llm_config.model.split('/')[-1]
model_path = model_name.replace(':', '_').replace('@', '-')
eval_note = f'_N_{eval_note}' if eval_note else ''
eval_output_path = os.path.join(
eval_output_dir,
dataset_name,
agent_class,
f'{model_path}_maxiter_{max_iterations}{eval_note}',
)
pathlib.Path(eval_output_path).mkdir(parents=True, exist_ok=True)
pathlib.Path(os.path.join(eval_output_path, 'logs')).mkdir(
parents=True, exist_ok=True
)
logger.info(f'Using evaluation output directory: {eval_output_path}')
metadata = EvalMetadata(
agent_class=agent_class,
llm_config=llm_config,
max_iterations=max_iterations,
eval_output_dir=eval_output_path,
start_time=time.strftime('%Y-%m-%d %H:%M:%S'),
git_commit=subprocess.check_output(['git', 'rev-parse', 'HEAD'])
.decode('utf-8')
.strip(),
dataset=dataset_name,
data_split=data_split,
details=details,
condenser_config=condenser_config
if condenser_config
else NoOpCondenserConfig(),
)
metadata_json = metadata.model_dump_json()
logger.info(f'Metadata: {metadata_json}')
with open(os.path.join(eval_output_path, 'metadata.json'), 'w') as f:
f.write(metadata_json)
return metadata
def prepare_dataset(
dataset: pd.DataFrame,
output_file: str,
eval_n_limit: int,
eval_ids: list[str] | None = None,
skip_num: int | None = None,
):
assert (
'instance_id' in dataset.columns
), "Expected 'instance_id' column in the dataset. You should define your own unique identifier for each instance and use it as the 'instance_id' column."
id_column = 'instance_id'
logger.info(f'Writing evaluation output to {output_file}')
finished_ids: set[str] = set()
if os.path.exists(output_file):
with open(output_file, 'r') as f:
for line in f:
data = json.loads(line)
finished_ids.add(str(data[id_column]))
logger.warning(
f'\nOutput file {output_file} already exists. Loaded {len(finished_ids)} finished instances.'
)
if eval_ids:
eval_ids_converted = [dataset[id_column].dtype.type(id) for id in eval_ids]
dataset = dataset[dataset[id_column].isin(eval_ids_converted)]
logger.info(f'Limiting evaluation to {len(eval_ids)} specific instances.')
elif skip_num and skip_num >= 0:
skip_num = min(skip_num, len(dataset))
dataset = dataset.iloc[skip_num:]
logger.info(
f'Starting evaluation with skipping first {skip_num} instances ({len(dataset)} instances to run).'
)
if eval_n_limit and eval_n_limit > 0:
dataset = dataset.head(eval_n_limit)
logger.info(f'Limiting evaluation to {eval_n_limit} instances.')
elif eval_n_limit and eval_n_limit > 0:
dataset = dataset.head(eval_n_limit)
logger.info(f'Limiting evaluation to first {eval_n_limit} instances.')
new_dataset = [
instance
for _, instance in dataset.iterrows()
if str(instance[id_column]) not in finished_ids
]
logger.info(
f'Finished instances: {len(finished_ids)}, Remaining instances: {len(new_dataset)}'
)
return pd.DataFrame(new_dataset)
def update_progress(
result: EvalOutput,
pbar: tqdm,
output_fp: TextIO,
):
"""Update the progress bar and write the result to the output file."""
pbar.update(1)
pbar.set_description(f'Instance {result.instance_id}')
pbar.set_postfix_str(f'Test Result: {str(result.test_result)[:300]}...')
logger.info(
f'Finished evaluation for instance {result.instance_id}: {str(result.test_result)[:300]}...\n'
)
output_fp.write(result.model_dump_json() + '\n')
output_fp.flush()
def assert_and_raise(condition: bool, msg: str):
"""Raise an EvalException if the condition is not met.
This will be used in conjunction with _process_instance_wrapper to handle retries. An EvalException should trigger a retry.
"""
if not condition:
raise EvalException(msg)
def _process_instance_wrapper(
process_instance_func: Callable[[pd.Series, EvalMetadata, bool], EvalOutput],
instance: pd.Series,
metadata: EvalMetadata,
use_mp: bool,
max_retries: int = 5,
timeout_seconds: int | None = None,
) -> EvalOutput:
"""Wrap the process_instance_func to handle retries and errors."""
runtime_failure_count = 0
for attempt in range(max_retries + 1):
try:
kwargs = {}
# check if process_instance_func accepts timeout_seconds parameter
sig = signature(process_instance_func)
if 'runtime_failure_count' in sig.parameters:
kwargs['runtime_failure_count'] = runtime_failure_count
if timeout_seconds is not None:
with timeout(timeout_seconds):
result = process_instance_func(instance, metadata, use_mp, **kwargs)
else:
result = process_instance_func(instance, metadata, use_mp, **kwargs)
return result
except EvalTimeoutException as e:
error = f'Timeout after {timeout_seconds} seconds'
stacktrace = traceback.format_exc()
msg = (
'-' * 10
+ '\n'
+ f'Timeout ({timeout_seconds} seconds) in instance [{instance.instance_id}], Stopped evaluation for this instance.'
+ '\n'
+ '-' * 10
)
logger.exception(e)
return EvalOutput(
instance_id=instance.instance_id,
test_result={},
error=error,
)
except Exception as e:
error = str(e)
stacktrace = traceback.format_exc()
if attempt == max_retries:
msg = (
'-' * 10
+ '\n'
+ f'Error in instance [{instance.instance_id}]: {error}. Stacktrace:\n{stacktrace}'
+ '\n'
+ f'[Encountered after {max_retries} retries. Please check the logs and report the issue.]'
+ '-' * 10
)
# Raise an error after all retries & stop the evaluation
logger.exception(e)
raise RuntimeError(
f'Maximum error retries reached for instance {instance.instance_id}'
) from e
msg = (
'-' * 10
+ '\n'
+ f'Error in instance [{instance.instance_id}]: {error}. Stacktrace:\n{stacktrace}'
+ '\n'
+ '-' * 10
+ f'[The above error occurred. Retrying... (attempt {attempt + 1} of {max_retries})]'
+ '-' * 10
+ '\n'
)
# e is likely an EvalException, so we can't directly infer it from type
# but rather check if it's a fatal error
# But it can also be AgentRuntime**Error (e.g., swe_bench/eval_infer.py)
_error_str = type(e).__name__ + ': ' + str(e)
if is_fatal_runtime_error(_error_str):
runtime_failure_count += 1
msg += f'Runtime disconnected error detected for instance {instance.instance_id}, runtime failure count: {runtime_failure_count}'
msg += '\n' + '-' * 10 + '\n'
logger.error(msg)
time.sleep(5)
def _process_instance_wrapper_mp(args):
"""Wrapper for multiprocessing, especially for imap_unordered."""
return _process_instance_wrapper(*args)
def run_evaluation(
dataset: pd.DataFrame,
metadata: EvalMetadata | None,
output_file: str,
num_workers: int,
process_instance_func: Callable[
[pd.Series, EvalMetadata, bool], Awaitable[EvalOutput]
],
max_retries: int = 5, # number of retries for each instance
timeout_seconds: int | None = None,
):
use_multiprocessing = num_workers > 1
if metadata is not None:
logger.info(
f'Evaluation started with Agent {metadata.agent_class}:\n'
f'model {metadata.llm_config.model}, max iterations {metadata.max_iterations}.\n'
)
else:
logger.warning('Running evaluation without metadata.')
logger.info(f'Evaluation started with {num_workers} workers.')
total_instances = len(dataset)
pbar = tqdm(total=total_instances, desc='Instances processed')
output_fp = open(output_file, 'a')
try:
if use_multiprocessing:
with mp.Pool(num_workers) as pool:
args_iter = (
(
process_instance_func,
instance,
metadata,
True,
max_retries,
timeout_seconds,
)
for _, instance in dataset.iterrows()
)
results = pool.imap_unordered(_process_instance_wrapper_mp, args_iter)
for result in results:
update_progress(result, pbar, output_fp)
else:
for _, instance in dataset.iterrows():
result = _process_instance_wrapper(
process_instance_func=process_instance_func,
instance=instance,
metadata=metadata,
use_mp=False,
max_retries=max_retries,
)
update_progress(result, pbar, output_fp)
except KeyboardInterrupt:
print('\nKeyboardInterrupt received. Cleaning up...\n')
cleanup()
output_fp.close()
logger.info('\nEvaluation finished.\n')
def reset_logger_for_multiprocessing(
logger: logging.Logger, instance_id: str, log_dir: str
):
"""Reset the logger for multiprocessing.
Save logs to a separate file for each process, instead of trying to write to the
same file/console from multiple processes.
"""
# Set up logger
log_file = os.path.join(
log_dir,
f'instance_{instance_id}.log',
)
# Remove all existing handlers from logger
for handler in logger.handlers[:]:
logger.removeHandler(handler)
# add console handler to print ONE line
console_handler = get_console_handler(log_level=logging.INFO)
console_handler.setFormatter(
logging.Formatter(
f'Instance {instance_id} - ' + '%(asctime)s - %(levelname)s - %(message)s'
)
)
logger.addHandler(console_handler)
logger.info(
f'Starting evaluation for instance {instance_id}.\n'
f'Hint: run "tail -f {log_file}" to see live logs in a separate shell'
)
# Only log WARNING or higher to console
console_handler.setLevel(logging.WARNING)
# Log INFO and above to file
os.makedirs(os.path.dirname(log_file), exist_ok=True)
file_handler = logging.FileHandler(log_file)
file_handler.setFormatter(
logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
)
file_handler.setLevel(logging.INFO)
logger.addHandler(file_handler)
def update_llm_config_for_completions_logging(
llm_config: LLMConfig,
eval_output_dir: str,
instance_id: str,
) -> LLMConfig:
"""Update the LLM config for logging completions."""
if llm_config.log_completions:
llm_config.log_completions_folder = os.path.join(
eval_output_dir, 'llm_completions', instance_id
)
logger.info(
f'Logging LLM completions for instance {instance_id} to '
f'{llm_config.log_completions_folder}'
)
return llm_config
# history is now available as a filtered stream of events, rather than list of pairs of (Action, Observation)
# we rebuild the pairs here
# for compatibility with the existing output format in evaluations
# remove this when it's no longer necessary
def compatibility_for_eval_history_pairs(
history: list[Event],
) -> list[tuple[dict, dict]]:
history_pairs = []
for action, observation in get_pairs_from_events(history):
history_pairs.append((event_to_dict(action), event_to_dict(observation)))
return history_pairs
def is_fatal_evaluation_error(error: str | None) -> bool:
if not error:
return False
FATAL_EXCEPTIONS = [
AgentRuntimeError,
AgentRuntimeBuildError,
AgentRuntimeTimeoutError,
AgentRuntimeUnavailableError,
AgentRuntimeNotReadyError,
AgentRuntimeDisconnectedError,
AgentRuntimeNotFoundError,
ConnectionError,
]
if any(exception.__name__ in error for exception in FATAL_EXCEPTIONS):
logger.error(f'Fatal evaluation error detected: {error}')
return True
return False
def is_fatal_runtime_error(error: str | None) -> bool:
if not error:
return False
FATAL_RUNTIME_ERRORS = [
AgentRuntimeTimeoutError,
AgentRuntimeUnavailableError,
AgentRuntimeDisconnectedError,
AgentRuntimeNotFoundError,
]
if any(exception.__name__ in error for exception in FATAL_RUNTIME_ERRORS):
logger.error(f'Fatal runtime error detected: {error}')
return True
return False
def get_metrics(state: State) -> dict[str, Any]:
"""Extract metrics from the state."""
metrics = state.metrics.get() if state.metrics else {}
metrics['condenser'] = get_condensation_metadata(state)
return metrics
|