|
import asyncio
|
|
import functools
|
|
import os
|
|
import re
|
|
|
|
import huggingface_hub
|
|
import pandas as pd
|
|
from datasets import load_dataset
|
|
|
|
from evaluation.benchmarks.gaia.scorer import question_scorer
|
|
from evaluation.utils.shared import (
|
|
EvalMetadata,
|
|
EvalOutput,
|
|
codeact_user_response,
|
|
compatibility_for_eval_history_pairs,
|
|
make_metadata,
|
|
prepare_dataset,
|
|
reset_logger_for_multiprocessing,
|
|
run_evaluation,
|
|
)
|
|
from openhands.controller.state.state import State
|
|
from openhands.core.config import (
|
|
AppConfig,
|
|
SandboxConfig,
|
|
get_llm_config_arg,
|
|
get_parser,
|
|
)
|
|
from openhands.core.logger import openhands_logger as logger
|
|
from openhands.core.main import create_runtime, run_controller
|
|
from openhands.events.action import AgentFinishAction, CmdRunAction, MessageAction
|
|
from openhands.events.observation import CmdOutputObservation
|
|
from openhands.runtime.base import Runtime
|
|
from openhands.utils.async_utils import call_async_from_sync
|
|
|
|
DATASET_CACHE_DIR = os.path.join(os.path.dirname(__file__), 'data')
|
|
|
|
|
|
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
|
|
'CodeActAgent': functools.partial(codeact_user_response, encapsulate_solution=True),
|
|
}
|
|
|
|
AGENT_CLS_TO_INST_SUFFIX = {
|
|
'CodeActAgent': 'When you think you have solved the question, please first send your answer to user through message and then exit.\n'
|
|
}
|
|
|
|
|
|
def get_config(
|
|
metadata: EvalMetadata,
|
|
) -> AppConfig:
|
|
config = AppConfig(
|
|
default_agent=metadata.agent_class,
|
|
run_as_openhands=False,
|
|
runtime='docker',
|
|
max_iterations=metadata.max_iterations,
|
|
sandbox=SandboxConfig(
|
|
base_container_image='python:3.12-bookworm',
|
|
enable_auto_lint=True,
|
|
use_host_network=False,
|
|
),
|
|
|
|
workspace_base=None,
|
|
workspace_mount_path=None,
|
|
)
|
|
config.set_llm_config(metadata.llm_config)
|
|
agent_config = config.get_agent_config(metadata.agent_class)
|
|
agent_config.enable_prompt_extensions = False
|
|
return config
|
|
|
|
|
|
def initialize_runtime(
|
|
runtime: Runtime,
|
|
instance: pd.Series,
|
|
):
|
|
"""Initialize the runtime for the agent.
|
|
|
|
This function is called before the runtime is used to run the agent.
|
|
"""
|
|
logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
|
|
obs: CmdOutputObservation
|
|
|
|
action = CmdRunAction(command='mkdir -p /workspace')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
assert obs.exit_code == 0
|
|
|
|
if instance['file_name'] != '':
|
|
|
|
assert metadata.data_split is not None
|
|
src_file = os.path.join(
|
|
DATASET_CACHE_DIR, '2023', metadata.data_split, instance['file_name']
|
|
)
|
|
assert os.path.exists(src_file)
|
|
dest_file = os.path.join('/workspace', instance['file_name'])
|
|
runtime.copy_to(src_file, dest_file)
|
|
|
|
|
|
extension_name = instance['file_name'].split('.')[-1]
|
|
action = CmdRunAction(
|
|
command=f'mv /workspace/{instance["file_name"]} /workspace/file.{extension_name}'
|
|
)
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
assert obs.exit_code == 0
|
|
|
|
action = CmdRunAction(command='cd /workspace')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
assert obs.exit_code == 0
|
|
|
|
logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
|
|
|
|
|
|
def process_instance(
|
|
instance: pd.Series,
|
|
metadata: EvalMetadata,
|
|
reset_logger: bool = True,
|
|
) -> EvalOutput:
|
|
config = get_config(metadata)
|
|
|
|
|
|
if reset_logger:
|
|
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
|
|
reset_logger_for_multiprocessing(logger, instance['instance_id'], log_dir)
|
|
else:
|
|
logger.info(f'Starting evaluation for instance {instance["instance_id"]}.')
|
|
|
|
if instance['file_name'] != '':
|
|
extension_name = instance['file_name'].split('.')[-1]
|
|
dest_file = os.path.join('/workspace', f'file.{extension_name}')
|
|
else:
|
|
dest_file = None
|
|
|
|
|
|
instruction = f"{instance['Question']}\n"
|
|
logger.info(f'Instruction: {instruction}')
|
|
if dest_file:
|
|
instruction += f"\n\nThe mentioned file is provided in the workspace at: {dest_file.split('/')[-1]}"
|
|
|
|
instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
|
|
instruction += 'Please encapsulate your final answer (answer ONLY) within <solution> and </solution>.\n'
|
|
instruction += (
|
|
'For example: The answer to the question is <solution> 42 </solution>.\n'
|
|
)
|
|
|
|
instruction += AGENT_CLS_TO_INST_SUFFIX.get(metadata.agent_class, '')
|
|
logger.info(f'Instruction:\n{instruction}', extra={'msg_type': 'OBSERVATION'})
|
|
|
|
runtime = create_runtime(config)
|
|
call_async_from_sync(runtime.connect)
|
|
initialize_runtime(runtime, instance)
|
|
|
|
|
|
state: State | None = asyncio.run(
|
|
run_controller(
|
|
config=config,
|
|
initial_user_action=MessageAction(content=instruction),
|
|
runtime=runtime,
|
|
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[
|
|
metadata.agent_class
|
|
],
|
|
)
|
|
)
|
|
|
|
|
|
|
|
|
|
if state is None:
|
|
raise ValueError('State should not be None.')
|
|
|
|
model_answer_raw = ''
|
|
|
|
for event in reversed(state.history):
|
|
if event.source == 'agent':
|
|
if isinstance(event, AgentFinishAction):
|
|
model_answer_raw = event.thought
|
|
break
|
|
elif isinstance(event, CmdRunAction):
|
|
model_answer_raw = event.thought
|
|
break
|
|
elif isinstance(event, MessageAction):
|
|
model_answer_raw = event.content
|
|
break
|
|
|
|
|
|
model_answer = re.findall(r'<solution>(.*?)</solution>', model_answer_raw)
|
|
if len(model_answer) == 0:
|
|
logger.warning(f'Failed to parse model answer: {model_answer_raw}')
|
|
model_answer = model_answer_raw
|
|
else:
|
|
model_answer = model_answer[0]
|
|
|
|
logger.info(
|
|
f'Final message: {model_answer} | Ground truth: {instance["Final answer"]}'
|
|
)
|
|
score = question_scorer(
|
|
model_answer=model_answer, ground_truth=instance['Final answer']
|
|
)
|
|
test_result = {
|
|
'score': score,
|
|
'model_answer_raw': model_answer_raw,
|
|
'model_answer': model_answer,
|
|
'ground_truth': instance['Final answer'],
|
|
}
|
|
metrics = state.metrics.get() if state.metrics else None
|
|
|
|
|
|
|
|
|
|
histories = compatibility_for_eval_history_pairs(state.history)
|
|
|
|
|
|
output = EvalOutput(
|
|
instance_id=instance['instance_id'],
|
|
instance=instance.to_dict(),
|
|
instruction=instance['Question'],
|
|
metadata=metadata,
|
|
history=histories,
|
|
metrics=metrics,
|
|
error=state.last_error if state and state.last_error else None,
|
|
test_result=test_result,
|
|
)
|
|
return output
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = get_parser()
|
|
parser.add_argument(
|
|
'--level',
|
|
type=str,
|
|
help='gaia level to evaluate, eg. 2023_level1',
|
|
)
|
|
parser.add_argument(
|
|
'--data-split',
|
|
type=str,
|
|
help='data split to evaluate, eg. test',
|
|
default='validation',
|
|
)
|
|
args, _ = parser.parse_known_args()
|
|
|
|
llm_config = None
|
|
if args.llm_config:
|
|
llm_config = get_llm_config_arg(args.llm_config)
|
|
|
|
llm_config.modify_params = False
|
|
|
|
if llm_config is None:
|
|
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
|
|
|
|
metadata = make_metadata(
|
|
llm_config=llm_config,
|
|
dataset_name='gaia',
|
|
agent_class=args.agent_cls,
|
|
max_iterations=args.max_iterations,
|
|
eval_note=args.eval_note,
|
|
eval_output_dir=args.eval_output_dir,
|
|
data_split=args.data_split,
|
|
details={'gaia-level': args.level},
|
|
)
|
|
|
|
dataset = load_dataset('gaia-benchmark/GAIA', args.level)
|
|
huggingface_hub.snapshot_download(
|
|
'gaia-benchmark/GAIA',
|
|
repo_type='dataset',
|
|
local_dir=DATASET_CACHE_DIR,
|
|
)
|
|
gaia_tests = dataset[metadata.data_split].to_pandas()
|
|
gaia_tests.rename(columns={'task_id': 'instance_id'}, inplace=True)
|
|
|
|
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
|
|
prepared_dataset = prepare_dataset(gaia_tests, output_file, args.eval_n_limit)
|
|
|
|
run_evaluation(
|
|
dataset=prepared_dataset,
|
|
metadata=metadata,
|
|
output_file=output_file,
|
|
num_workers=args.eval_num_workers,
|
|
process_instance_func=process_instance,
|
|
)
|
|
|