ar08's picture
Upload 1040 files
246d201 verified
import asyncio
import functools
import os
from typing import Any
import pandas as pd
from datasets import load_dataset
from evaluation.benchmarks.mint.datatypes import TaskState
from evaluation.benchmarks.mint.env import SimplifiedEnv
from evaluation.benchmarks.mint.prompts import ToolPromptTemplate
from evaluation.benchmarks.mint.tasks import Task
from evaluation.utils.shared import (
EvalMetadata,
EvalOutput,
compatibility_for_eval_history_pairs,
make_metadata,
prepare_dataset,
reset_logger_for_multiprocessing,
run_evaluation,
)
from openhands.controller.state.state import State
from openhands.core.config import (
AppConfig,
SandboxConfig,
get_llm_config_arg,
get_parser,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.events.action import (
Action,
CmdRunAction,
MessageAction,
)
from openhands.events.observation import CmdOutputObservation
from openhands.runtime.base import Runtime
from openhands.utils.async_utils import call_async_from_sync
def codeact_user_response_mint(state: State, task: Task, task_config: dict[str, int]):
logger.info(f'Gold reference: {task.reference}')
logger.info(f'Task config: {task_config}')
env = SimplifiedEnv(
agent_state=state,
task=task,
task_config=task_config,
)
last_action = next(
(event for event in reversed(state.history) if isinstance(event, Action)),
None,
)
result_state: TaskState = env.step(last_action.message or '')
state.extra_data['task_state'] = result_state
if not result_state.latest_output:
# Task is finished
msg = '/exit'
else:
msg = result_state.latest_output['content']
logger.info('User response:' + msg)
return msg
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
'CodeActAgent': codeact_user_response_mint,
}
AGENT_CLS_TO_INST_SUFFIX = {
'CodeActAgent': 'IMPORTANT: When your answer is confirmed by the user to be correct, you can use the "finish" tool to finish the interaction.\n'
}
with open(os.path.join(os.path.dirname(__file__), 'requirements.txt'), 'r') as f:
MINT_DEPENDENCIES = f.read().splitlines()
def load_incontext_example(task_name: str, with_tool: bool = True):
assert with_tool, 'NOT with_tool is not supported yet'
subset = {
'gsm8k': 'reasoning',
'math': 'reasoning',
'mmlu': 'reasoning',
'theoremqa': 'reasoning',
'mbpp': 'mbpp',
'humaneval': 'humaneval',
}[task_name]
with open(
os.path.join(
os.path.dirname(__file__),
'tasks',
'in_context_examples',
subset,
'with_tool.txt',
),
'r',
) as f:
return f.read()
def get_config(
metadata: EvalMetadata,
) -> AppConfig:
config = AppConfig(
default_agent=metadata.agent_class,
run_as_openhands=False,
runtime='docker',
max_iterations=metadata.max_iterations,
sandbox=SandboxConfig(
base_container_image='xingyaoww/od-eval-mint:v1.0',
enable_auto_lint=True,
use_host_network=False,
runtime_extra_deps=f'$OH_INTERPRETER_PATH -m pip install {" ".join(MINT_DEPENDENCIES)}',
),
# do not mount workspace
workspace_base=None,
workspace_mount_path=None,
)
config.set_llm_config(metadata.llm_config)
agent_config = config.get_agent_config(metadata.agent_class)
agent_config.enable_prompt_extensions = False
return config
def initialize_runtime(runtime: Runtime):
"""Initialize the runtime for the agent.
This function is called before the runtime is used to run the agent.
"""
logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
obs: CmdOutputObservation
# Set instance id
action = CmdRunAction(command='mkdir -p /workspace')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
assert obs.exit_code == 0
action = CmdRunAction(command='cd /workspace')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
assert obs.exit_code == 0
logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
def process_instance(
instance: Any,
metadata: EvalMetadata,
reset_logger: bool = True,
):
config = get_config(metadata)
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
if reset_logger:
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir)
else:
logger.info(f'Starting evaluation for instance {instance.instance_id}.')
# Prepare instruction
assert metadata.details is not None
instruction = ToolPromptTemplate(use_tool=True)(
max_total_steps=metadata.max_iterations,
max_propose_solution=metadata.details['max_propose_solution'],
in_context_example=instance.in_context_example,
task_prompt='Task:\n' + instance.prompt,
)
instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you or provide the concise RESULT inside <solution> tag AND NEVER ASK FOR HUMAN HELP.\n'
# NOTE: You can actually set slightly different instruction for different agents
instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class]
# Here's how you can run the agent (similar to the `main` function) and get the final task state
fake_user_response_fn = functools.partial(
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[metadata.agent_class],
task=instance,
task_config={
'max_iterations': metadata.max_iterations,
'max_propose_solution': metadata.details['max_propose_solution'],
},
)
runtime = create_runtime(config)
call_async_from_sync(runtime.connect)
initialize_runtime(runtime)
state: State | None = asyncio.run(
run_controller(
config=config,
initial_user_action=MessageAction(content=instruction),
runtime=runtime,
fake_user_response_fn=fake_user_response_fn,
)
)
if state is None:
raise ValueError('State should not be None.')
task_state = None
if 'task_state' in state.extra_data:
task_state = state.extra_data['task_state']
logger.info('Task state: ' + str(task_state.to_dict()))
metrics = state.metrics.get() if state.metrics else None
# history is now available as a stream of events, rather than list of pairs of (Action, Observation)
# for compatibility with the existing output format, we can remake the pairs here
# remove when it becomes unnecessary
histories = compatibility_for_eval_history_pairs(state.history)
# Save the output
output = EvalOutput(
instance_id=instance.instance_id,
instance=instance.to_dict(),
instruction=instruction,
metadata=metadata,
history=histories,
metrics=metrics,
error=state.last_error if state and state.last_error else None,
test_result={
'success': task_state.success if task_state else False,
},
)
return output
if __name__ == '__main__':
parser = get_parser()
SUBSETS = [
# Eurus subset: https://arxiv.org/abs/2404.02078
'math',
# 'gsm8k',
'mmlu',
'theoremqa',
'mbpp',
'humaneval',
]
parser.add_argument(
'--subset',
default='all',
choices=SUBSETS + ['all'],
type=str,
help='subset of the dataset to be used',
)
parser.add_argument(
'--max-propose-solution',
default=2,
type=int,
help='maximum number of times the agent can propose a solution',
)
args, _ = parser.parse_known_args()
# NOTE: It is preferable to load datasets from huggingface datasets and perform post-processing
# so we don't need to manage file uploading to OpenHands's repo
if args.subset == 'all':
subsets = SUBSETS
else:
subsets = [args.subset]
dataset_dfs = []
for subset in subsets:
in_context_example = load_incontext_example(subset)
_cur_dataset = load_dataset(
'ryanhoangt/xingyaoww-mint-bench', name=subset, split='test'
)
logger.info(f'Loaded MINT - {subset} subset')
_df = _cur_dataset.to_pandas().rename(columns={'id': 'instance_id'})
_df['instance_id'] = _df['instance_id'].apply(lambda x: f'{subset}/{x}') # noqa
_df['in_context_example'] = in_context_example
dataset_dfs.append(_df)
logger.info(f'Loaded {len(_df)} instances for subset: {subset}')
dataset_df = pd.concat(dataset_dfs)
logger.info(f'Loaded {len(dataset_df)} instances for subset: {subsets}')
llm_config = None
if args.llm_config:
llm_config = get_llm_config_arg(args.llm_config)
# modify_params must be False for evaluation purpose, for reproducibility and accurancy of results
llm_config.modify_params = False
if llm_config is None:
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
metadata = make_metadata(
llm_config,
f'MINT-{args.subset}',
args.agent_cls,
args.max_iterations,
args.eval_note,
args.eval_output_dir,
details={'max_propose_solution': args.max_propose_solution},
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
instances = prepare_dataset(dataset_df, output_file, args.eval_n_limit)
run_evaluation(
instances, metadata, output_file, args.eval_num_workers, process_instance
)