|
import asyncio
|
|
import functools
|
|
import os
|
|
from typing import Any
|
|
|
|
import pandas as pd
|
|
from datasets import load_dataset
|
|
|
|
from evaluation.benchmarks.mint.datatypes import TaskState
|
|
from evaluation.benchmarks.mint.env import SimplifiedEnv
|
|
from evaluation.benchmarks.mint.prompts import ToolPromptTemplate
|
|
from evaluation.benchmarks.mint.tasks import Task
|
|
from evaluation.utils.shared import (
|
|
EvalMetadata,
|
|
EvalOutput,
|
|
compatibility_for_eval_history_pairs,
|
|
make_metadata,
|
|
prepare_dataset,
|
|
reset_logger_for_multiprocessing,
|
|
run_evaluation,
|
|
)
|
|
from openhands.controller.state.state import State
|
|
from openhands.core.config import (
|
|
AppConfig,
|
|
SandboxConfig,
|
|
get_llm_config_arg,
|
|
get_parser,
|
|
)
|
|
from openhands.core.logger import openhands_logger as logger
|
|
from openhands.core.main import create_runtime, run_controller
|
|
from openhands.events.action import (
|
|
Action,
|
|
CmdRunAction,
|
|
MessageAction,
|
|
)
|
|
from openhands.events.observation import CmdOutputObservation
|
|
from openhands.runtime.base import Runtime
|
|
from openhands.utils.async_utils import call_async_from_sync
|
|
|
|
|
|
def codeact_user_response_mint(state: State, task: Task, task_config: dict[str, int]):
|
|
logger.info(f'Gold reference: {task.reference}')
|
|
logger.info(f'Task config: {task_config}')
|
|
|
|
env = SimplifiedEnv(
|
|
agent_state=state,
|
|
task=task,
|
|
task_config=task_config,
|
|
)
|
|
last_action = next(
|
|
(event for event in reversed(state.history) if isinstance(event, Action)),
|
|
None,
|
|
)
|
|
result_state: TaskState = env.step(last_action.message or '')
|
|
|
|
state.extra_data['task_state'] = result_state
|
|
|
|
if not result_state.latest_output:
|
|
|
|
msg = '/exit'
|
|
else:
|
|
msg = result_state.latest_output['content']
|
|
|
|
logger.info('User response:' + msg)
|
|
return msg
|
|
|
|
|
|
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
|
|
'CodeActAgent': codeact_user_response_mint,
|
|
}
|
|
|
|
AGENT_CLS_TO_INST_SUFFIX = {
|
|
'CodeActAgent': 'IMPORTANT: When your answer is confirmed by the user to be correct, you can use the "finish" tool to finish the interaction.\n'
|
|
}
|
|
|
|
with open(os.path.join(os.path.dirname(__file__), 'requirements.txt'), 'r') as f:
|
|
MINT_DEPENDENCIES = f.read().splitlines()
|
|
|
|
|
|
def load_incontext_example(task_name: str, with_tool: bool = True):
|
|
assert with_tool, 'NOT with_tool is not supported yet'
|
|
subset = {
|
|
'gsm8k': 'reasoning',
|
|
'math': 'reasoning',
|
|
'mmlu': 'reasoning',
|
|
'theoremqa': 'reasoning',
|
|
'mbpp': 'mbpp',
|
|
'humaneval': 'humaneval',
|
|
}[task_name]
|
|
with open(
|
|
os.path.join(
|
|
os.path.dirname(__file__),
|
|
'tasks',
|
|
'in_context_examples',
|
|
subset,
|
|
'with_tool.txt',
|
|
),
|
|
'r',
|
|
) as f:
|
|
return f.read()
|
|
|
|
|
|
def get_config(
|
|
metadata: EvalMetadata,
|
|
) -> AppConfig:
|
|
config = AppConfig(
|
|
default_agent=metadata.agent_class,
|
|
run_as_openhands=False,
|
|
runtime='docker',
|
|
max_iterations=metadata.max_iterations,
|
|
sandbox=SandboxConfig(
|
|
base_container_image='xingyaoww/od-eval-mint:v1.0',
|
|
enable_auto_lint=True,
|
|
use_host_network=False,
|
|
runtime_extra_deps=f'$OH_INTERPRETER_PATH -m pip install {" ".join(MINT_DEPENDENCIES)}',
|
|
),
|
|
|
|
workspace_base=None,
|
|
workspace_mount_path=None,
|
|
)
|
|
config.set_llm_config(metadata.llm_config)
|
|
agent_config = config.get_agent_config(metadata.agent_class)
|
|
agent_config.enable_prompt_extensions = False
|
|
return config
|
|
|
|
|
|
def initialize_runtime(runtime: Runtime):
|
|
"""Initialize the runtime for the agent.
|
|
|
|
This function is called before the runtime is used to run the agent.
|
|
"""
|
|
logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
|
|
obs: CmdOutputObservation
|
|
|
|
|
|
action = CmdRunAction(command='mkdir -p /workspace')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
assert obs.exit_code == 0
|
|
|
|
action = CmdRunAction(command='cd /workspace')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
assert obs.exit_code == 0
|
|
|
|
logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
|
|
|
|
|
|
def process_instance(
|
|
instance: Any,
|
|
metadata: EvalMetadata,
|
|
reset_logger: bool = True,
|
|
):
|
|
config = get_config(metadata)
|
|
|
|
|
|
if reset_logger:
|
|
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
|
|
reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir)
|
|
else:
|
|
logger.info(f'Starting evaluation for instance {instance.instance_id}.')
|
|
|
|
|
|
assert metadata.details is not None
|
|
instruction = ToolPromptTemplate(use_tool=True)(
|
|
max_total_steps=metadata.max_iterations,
|
|
max_propose_solution=metadata.details['max_propose_solution'],
|
|
in_context_example=instance.in_context_example,
|
|
task_prompt='Task:\n' + instance.prompt,
|
|
)
|
|
instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you or provide the concise RESULT inside <solution> tag AND NEVER ASK FOR HUMAN HELP.\n'
|
|
|
|
|
|
instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class]
|
|
|
|
|
|
fake_user_response_fn = functools.partial(
|
|
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[metadata.agent_class],
|
|
task=instance,
|
|
task_config={
|
|
'max_iterations': metadata.max_iterations,
|
|
'max_propose_solution': metadata.details['max_propose_solution'],
|
|
},
|
|
)
|
|
|
|
runtime = create_runtime(config)
|
|
call_async_from_sync(runtime.connect)
|
|
initialize_runtime(runtime)
|
|
|
|
state: State | None = asyncio.run(
|
|
run_controller(
|
|
config=config,
|
|
initial_user_action=MessageAction(content=instruction),
|
|
runtime=runtime,
|
|
fake_user_response_fn=fake_user_response_fn,
|
|
)
|
|
)
|
|
|
|
if state is None:
|
|
raise ValueError('State should not be None.')
|
|
|
|
task_state = None
|
|
if 'task_state' in state.extra_data:
|
|
task_state = state.extra_data['task_state']
|
|
logger.info('Task state: ' + str(task_state.to_dict()))
|
|
|
|
metrics = state.metrics.get() if state.metrics else None
|
|
|
|
|
|
|
|
|
|
histories = compatibility_for_eval_history_pairs(state.history)
|
|
|
|
|
|
output = EvalOutput(
|
|
instance_id=instance.instance_id,
|
|
instance=instance.to_dict(),
|
|
instruction=instruction,
|
|
metadata=metadata,
|
|
history=histories,
|
|
metrics=metrics,
|
|
error=state.last_error if state and state.last_error else None,
|
|
test_result={
|
|
'success': task_state.success if task_state else False,
|
|
},
|
|
)
|
|
return output
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = get_parser()
|
|
|
|
SUBSETS = [
|
|
|
|
'math',
|
|
|
|
'mmlu',
|
|
'theoremqa',
|
|
'mbpp',
|
|
'humaneval',
|
|
]
|
|
parser.add_argument(
|
|
'--subset',
|
|
default='all',
|
|
choices=SUBSETS + ['all'],
|
|
type=str,
|
|
help='subset of the dataset to be used',
|
|
)
|
|
parser.add_argument(
|
|
'--max-propose-solution',
|
|
default=2,
|
|
type=int,
|
|
help='maximum number of times the agent can propose a solution',
|
|
)
|
|
|
|
args, _ = parser.parse_known_args()
|
|
|
|
|
|
|
|
if args.subset == 'all':
|
|
subsets = SUBSETS
|
|
else:
|
|
subsets = [args.subset]
|
|
|
|
dataset_dfs = []
|
|
for subset in subsets:
|
|
in_context_example = load_incontext_example(subset)
|
|
_cur_dataset = load_dataset(
|
|
'ryanhoangt/xingyaoww-mint-bench', name=subset, split='test'
|
|
)
|
|
logger.info(f'Loaded MINT - {subset} subset')
|
|
_df = _cur_dataset.to_pandas().rename(columns={'id': 'instance_id'})
|
|
_df['instance_id'] = _df['instance_id'].apply(lambda x: f'{subset}/{x}')
|
|
_df['in_context_example'] = in_context_example
|
|
dataset_dfs.append(_df)
|
|
logger.info(f'Loaded {len(_df)} instances for subset: {subset}')
|
|
|
|
dataset_df = pd.concat(dataset_dfs)
|
|
logger.info(f'Loaded {len(dataset_df)} instances for subset: {subsets}')
|
|
|
|
llm_config = None
|
|
if args.llm_config:
|
|
llm_config = get_llm_config_arg(args.llm_config)
|
|
|
|
llm_config.modify_params = False
|
|
if llm_config is None:
|
|
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
|
|
|
|
metadata = make_metadata(
|
|
llm_config,
|
|
f'MINT-{args.subset}',
|
|
args.agent_cls,
|
|
args.max_iterations,
|
|
args.eval_note,
|
|
args.eval_output_dir,
|
|
details={'max_propose_solution': args.max_propose_solution},
|
|
)
|
|
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
|
|
instances = prepare_dataset(dataset_df, output_file, args.eval_n_limit)
|
|
run_evaluation(
|
|
instances, metadata, output_file, args.eval_num_workers, process_instance
|
|
)
|
|
|