ar08's picture
Upload 1040 files
246d201 verified
import json
import os
import tempfile
import time
from functools import partial
import pandas as pd
from swebench.harness.grading import get_eval_report
from swebench.harness.run_evaluation import (
APPLY_PATCH_FAIL,
APPLY_PATCH_PASS,
)
from swebench.harness.test_spec import SWEbenchInstance, TestSpec, make_test_spec
from swebench.harness.utils import load_swebench_dataset
from tqdm import tqdm
from evaluation.benchmarks.swe_bench.resource.mapping import (
get_instance_resource_factor,
)
from evaluation.benchmarks.swe_bench.run_infer import get_instance_docker_image
from evaluation.utils.shared import (
EvalMetadata,
EvalOutput,
prepare_dataset,
reset_logger_for_multiprocessing,
run_evaluation,
)
from openhands.core.config import (
AppConfig,
SandboxConfig,
get_parser,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime
from openhands.events.action import CmdRunAction
from openhands.events.observation import CmdOutputObservation
from openhands.utils.async_utils import call_async_from_sync
# TODO: migrate all swe-bench docker to ghcr.io/openhands
DOCKER_IMAGE_PREFIX = os.environ.get('EVAL_DOCKER_IMAGE_PREFIX', 'docker.io/xingyaoww/')
logger.info(f'Using docker image prefix: {DOCKER_IMAGE_PREFIX}')
def process_git_patch(patch):
if not isinstance(patch, str):
return ''
if not patch.strip():
# skip empty patches
return ''
patch = patch.replace('\r\n', '\n')
# There might be some weird characters at the beginning of the patch
# due to some OpenHands inference command outputs
# FOR EXAMPLE:
# git diff --no-color --cached 895f28f9cbed817c00ab68770433170d83132d90
# 0
# diff --git a/django/db/models/sql/.backup.query.py b/django/db/models/sql/.backup.query.py
# new file mode 100644
# index 0000000000..fc13db5948
# We "find" the first line that starts with "diff" and then we remove lines before it
lines = patch.split('\n')
for i, line in enumerate(lines):
if line.startswith('diff --git'):
patch = '\n'.join(lines[i:])
break
patch = patch.rstrip() + '\n' # Make sure the last line ends with a newline
return patch
def get_config(instance: pd.Series) -> AppConfig:
# We use a different instance image for the each instance of swe-bench eval
base_container_image = get_instance_docker_image(instance['instance_id'])
logger.info(
f'Using instance container image: {base_container_image}. '
f'Please make sure this image exists. '
f'Submit an issue on https://github.com/All-Hands-AI/OpenHands if you run into any issues.'
)
config = AppConfig(
run_as_openhands=False,
runtime=os.environ.get('RUNTIME', 'docker'),
sandbox=SandboxConfig(
base_container_image=base_container_image,
use_host_network=False,
# large enough timeout, since some testcases take very long to run
timeout=600,
api_key=os.environ.get('ALLHANDS_API_KEY', None),
remote_runtime_api_url=os.environ.get('SANDBOX_REMOTE_RUNTIME_API_URL'),
remote_runtime_init_timeout=3600,
remote_runtime_resource_factor=get_instance_resource_factor(
dataset_name=metadata.dataset,
instance_id=instance['instance_id'],
),
),
# do not mount workspace
workspace_base=None,
workspace_mount_path=None,
)
return config
def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
log_dir: str | None = None,
runtime_failure_count: int = 0,
) -> EvalOutput:
"""
Evaluate agent performance on a SWE-bench problem instance.
Note that this signature differs from the expected input to `run_evaluation`. Use
`functools.partial` to provide optional arguments before passing to the evaluation harness.
Args:
log_dir (str | None, default=None): Path to directory where log files will be written. Must
be provided if `reset_logger` is set.
Raises:
AssertionError: if the `reset_logger` flag is set without a provided log directory.
"""
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
if reset_logger:
assert (
log_dir is not None
), "Can't reset logger without a provided log directory."
os.makedirs(log_dir, exist_ok=True)
reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir)
else:
logger.info(f'Starting evaluation for instance {instance.instance_id}.')
config = get_config(instance)
instance_id = instance.instance_id
model_patch = instance['model_patch']
test_spec: TestSpec = instance['test_spec']
logger.info(f'Starting evaluation for instance {instance_id}.')
if 'test_result' not in instance.keys():
instance['test_result'] = {}
instance['test_result']['report'] = {
'empty_generation': False,
'resolved': False,
'failed_apply_patch': False,
'error_eval': False,
'test_timeout': False,
}
if model_patch == '':
instance['test_result']['report']['empty_generation'] = True
return EvalOutput(
instance_id=instance_id,
test_result=instance['test_result'],
metadata=metadata,
)
# Increase resource_factor with increasing attempt_id
if runtime_failure_count > 0:
config.sandbox.remote_runtime_resource_factor = min(
config.sandbox.remote_runtime_resource_factor * (2**runtime_failure_count),
8,
)
logger.warning(
f'This is the {runtime_failure_count + 1}th attempt for instance {instance.instance_id}, setting resource factor to {config.sandbox.remote_runtime_resource_factor}'
)
try:
runtime = create_runtime(config)
call_async_from_sync(runtime.connect)
# Get patch and save it to /tmp/patch.diff
with tempfile.TemporaryDirectory() as temp_dir:
# Patch file
patch_file_path = os.path.join(temp_dir, 'patch.diff')
with open(patch_file_path, 'w') as f:
f.write(model_patch)
runtime.copy_to(patch_file_path, '/tmp')
# Eval script
eval_script_path = os.path.join(temp_dir, 'eval.sh')
with open(eval_script_path, 'w') as f:
f.write(test_spec.eval_script)
runtime.copy_to(eval_script_path, '/tmp')
# Set +x
action = CmdRunAction(command='chmod +x /tmp/eval.sh')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert obs.exit_code == 0
# Apply patch
exec_command = (
'cd /testbed && '
"(git apply -v /tmp/patch.diff && echo 'APPLY_PATCH_PASS' || "
"(echo 'Failed to apply patch with git apply, trying with patch command...' && "
"(patch --batch --fuzz=5 -p1 -i /tmp/patch.diff && echo 'APPLY_PATCH_PASS' || "
"echo 'APPLY_PATCH_FAIL')))"
)
action = CmdRunAction(command=exec_command)
action.set_hard_timeout(600)
obs = runtime.run_action(action)
assert isinstance(obs, CmdOutputObservation)
apply_patch_output = obs.content
assert isinstance(apply_patch_output, str)
instance['test_result']['apply_patch_output'] = apply_patch_output
if 'APPLY_PATCH_FAIL' in apply_patch_output:
logger.info(f'[{instance_id}] {APPLY_PATCH_FAIL}:\n{apply_patch_output}')
instance['test_result']['report']['failed_apply_patch'] = True
return EvalOutput(
instance_id=instance_id,
test_result=instance['test_result'],
metadata=metadata,
)
elif 'APPLY_PATCH_PASS' in apply_patch_output:
logger.info(f'[{instance_id}] {APPLY_PATCH_PASS}:\n{apply_patch_output}')
# Run eval script in background and save output to log file
log_file = '/tmp/eval_output.log'
action = CmdRunAction(command=f'/tmp/eval.sh > {log_file} 2>&1 & echo $!')
action.set_hard_timeout(300) # Short timeout just to get the process ID
obs = runtime.run_action(action)
if isinstance(obs, CmdOutputObservation) and obs.exit_code == 0:
pid = obs.content.split()[-1].strip()
logger.info(
f'[{instance_id}] Evaluation process started with PID: {pid}'
)
# Poll for completion
start_time = time.time()
timeout = 1800 # 30 minutes
while True:
seconds_elapsed = time.time() - start_time
if seconds_elapsed > timeout:
logger.info(
f'[{instance_id}] Evaluation timed out after {timeout} seconds'
)
instance['test_result']['report']['test_timeout'] = True
break
check_action = CmdRunAction(
command=f'ps -p {pid} > /dev/null; echo $?'
)
check_action.set_hard_timeout(300)
check_obs = runtime.run_action(check_action)
if (
isinstance(check_obs, CmdOutputObservation)
and check_obs.content.split()[-1].strip() == '1'
):
logger.info(
f'[{instance_id}] Evaluation process completed after {seconds_elapsed} seconds'
)
break
logger.info(
f'[{instance_id}] [{seconds_elapsed:.0f}s] Evaluation still running, waiting...'
)
time.sleep(30) # Wait for 30 seconds before checking again
# Read the log file
cat_action = CmdRunAction(command=f'cat {log_file}')
cat_action.set_hard_timeout(300)
cat_obs = runtime.run_action(cat_action)
# Grade answer
if isinstance(cat_obs, CmdOutputObservation) and cat_obs.exit_code == 0:
test_output = cat_obs.content
assert isinstance(test_output, str)
instance['test_result']['test_output'] = test_output
# Get report from test output
logger.info(f'[{instance_id}] Grading answer...')
with tempfile.TemporaryDirectory() as temp_dir:
# Create a directory structure that matches the expected format
# NOTE: this is a hack to make the eval report format consistent
# with the original SWE-Bench eval script
log_dir = os.path.join(temp_dir, 'logs', instance_id.lower())
os.makedirs(log_dir, exist_ok=True)
test_output_path = os.path.join(log_dir, 'test_output.txt')
with open(test_output_path, 'w') as f:
f.write(test_output)
try:
_report = get_eval_report(
test_spec=test_spec,
prediction={
'model_patch': model_patch,
'instance_id': instance_id,
},
log_path=test_output_path,
include_tests_status=True,
)
report = _report[instance_id]
logger.info(
f"[{instance_id}] report: {report}\nResult for {instance_id}: resolved: {report['resolved']}"
)
instance['test_result']['report']['resolved'] = report[
'resolved'
]
except Exception as e:
logger.error(
f'[{instance_id}] Error when getting eval report: {e}'
)
instance['test_result']['report']['resolved'] = False
instance['test_result']['report']['error_eval'] = True
else:
logger.info(f'[{instance_id}] Error when starting eval:\n{obs.content}')
instance['test_result']['report']['error_eval'] = True
return EvalOutput(
instance_id=instance_id,
test_result=instance['test_result'],
metadata=metadata,
)
else:
logger.info(
f'[{instance_id}] Unexpected output when applying patch:\n{apply_patch_output}'
)
raise RuntimeError(
instance_id,
f'Unexpected output when applying patch:\n{apply_patch_output}',
logger,
)
finally:
runtime.close()
if __name__ == '__main__':
parser = get_parser()
parser.add_argument(
'--input-file',
type=str,
help='Path to input predictions file',
required=True,
)
parser.add_argument(
'--dataset',
type=str,
default='princeton-nlp/SWE-bench',
help='data set to evaluate on, either full-test or lite-test',
)
parser.add_argument(
'--split',
type=str,
default='test',
help='split to evaluate on',
)
args, _ = parser.parse_known_args()
# Load SWE-Bench dataset
full_dataset: list[SWEbenchInstance] = load_swebench_dataset(
args.dataset, args.split
)
instance_id_to_instance = {
instance['instance_id']: instance for instance in full_dataset
}
logger.info(
f'Loaded dataset {args.dataset} with split {args.split} to run inference on.'
)
# Load predictions
assert args.input_file.endswith('.jsonl'), 'Input file must be a jsonl file.'
required_fields = ['instance_id', 'model_patch', 'test_result']
with open(args.input_file) as f:
predictions = pd.DataFrame.from_records(
[
{k: v for k, v in json.loads(line).items() if k in required_fields}
for line in tqdm(f, desc='Loading predictions')
]
)
assert (
'instance_id' in predictions.columns
), 'Input file must contain instance_id column.'
if 'model_patch' not in predictions.columns and (
'test_result' in predictions.columns
and 'model_patch' in predictions['test_result'].iloc[0]
):
raise ValueError(
'Input file must contain model_patch column OR test_result column with model_patch field.'
)
assert len(predictions['instance_id'].unique()) == len(
predictions
), 'instance_id column must be unique.'
if 'model_patch' not in predictions.columns:
predictions['model_patch'] = predictions['test_result'].apply(
lambda x: x.get('git_patch', '')
)
assert {'instance_id', 'model_patch'}.issubset(
set(predictions.columns)
), 'Input file must contain instance_id and model_patch columns.'
# Process model_patch
predictions['model_patch'] = predictions['model_patch'].apply(process_git_patch)
# Merge predictions with dataset
predictions['instance'] = predictions['instance_id'].apply(
lambda x: instance_id_to_instance[x]
)
predictions['test_spec'] = predictions['instance'].apply(make_test_spec)
# Prepare dataset
output_file = args.input_file.replace('.jsonl', '.swebench_eval.jsonl')
instances = prepare_dataset(predictions, output_file, args.eval_n_limit)
# If possible, load the relevant metadata to avoid issues with `run_evaluation`.
metadata: EvalMetadata | None = None
metadata_filepath = os.path.join(os.path.dirname(args.input_file), 'metadata.json')
if os.path.exists(metadata_filepath):
with open(metadata_filepath, 'r') as metadata_file:
data = metadata_file.read()
metadata = EvalMetadata.model_validate_json(data)
# The evaluation harness constrains the signature of `process_instance_func` but we need to
# pass extra information. Build a new function object to avoid issues with multiprocessing.
process_instance_func = partial(
process_instance, log_dir=output_file.replace('.jsonl', '.logs')
)
run_evaluation(
instances,
metadata=metadata,
output_file=output_file,
num_workers=args.eval_num_workers,
process_instance_func=process_instance_func,
)
# Load evaluated predictions & print number of resolved predictions
evaluated_predictions = pd.read_json(output_file, lines=True)
fields = ['resolved', 'failed_apply_patch', 'error_eval', 'empty_generation']
def count_report_field(row, field):
return row['test_result']['report'][field]
report = {}
for field in fields:
count = evaluated_predictions.apply(
count_report_field, args=(field,), axis=1
).sum()
report[field] = count
logger.info(
f'# {field}: {count} / {len(evaluated_predictions)}. ({count / len(evaluated_predictions):.2%})'
)