|
"""Bash-related tests for the EventStreamRuntime, which connects to the ActionExecutor running in the sandbox."""
|
|
|
|
import asyncio
|
|
import os
|
|
import tempfile
|
|
from unittest.mock import MagicMock
|
|
|
|
import pandas as pd
|
|
import pytest
|
|
from conftest import TEST_IN_CI
|
|
|
|
from evaluation.utils.shared import (
|
|
EvalException,
|
|
EvalMetadata,
|
|
EvalOutput,
|
|
assert_and_raise,
|
|
codeact_user_response,
|
|
make_metadata,
|
|
prepare_dataset,
|
|
reset_logger_for_multiprocessing,
|
|
run_evaluation,
|
|
)
|
|
from openhands.agenthub import Agent
|
|
from openhands.controller.state.state import State
|
|
from openhands.core.config import (
|
|
AgentConfig,
|
|
AppConfig,
|
|
LLMConfig,
|
|
SandboxConfig,
|
|
)
|
|
from openhands.core.logger import openhands_logger as logger
|
|
from openhands.core.main import create_runtime, run_controller
|
|
from openhands.events.action import CmdRunAction, MessageAction
|
|
from openhands.events.observation import CmdOutputObservation
|
|
from openhands.events.serialization.event import event_to_dict
|
|
from openhands.llm import LLM
|
|
from openhands.runtime.base import Runtime
|
|
from openhands.utils.async_utils import call_async_from_sync
|
|
|
|
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
|
|
'CodeActAgent': codeact_user_response,
|
|
}
|
|
|
|
|
|
def get_config(
|
|
metadata: EvalMetadata,
|
|
) -> AppConfig:
|
|
assert (
|
|
os.environ.get('SANDBOX_REMOTE_RUNTIME_API_URL') is not None
|
|
), 'SANDBOX_REMOTE_RUNTIME_API_URL must be set.'
|
|
assert (
|
|
os.environ.get('ALLHANDS_API_KEY') is not None
|
|
), 'ALLHANDS_API_KEY must be set.'
|
|
config = AppConfig(
|
|
default_agent=metadata.agent_class,
|
|
run_as_openhands=False,
|
|
max_iterations=metadata.max_iterations,
|
|
runtime='remote',
|
|
sandbox=SandboxConfig(
|
|
base_container_image='python:3.11-bookworm',
|
|
enable_auto_lint=True,
|
|
use_host_network=False,
|
|
|
|
timeout=300,
|
|
api_key=os.environ.get('ALLHANDS_API_KEY', None),
|
|
remote_runtime_api_url=os.environ.get('SANDBOX_REMOTE_RUNTIME_API_URL'),
|
|
keep_runtime_alive=False,
|
|
),
|
|
|
|
workspace_base=None,
|
|
workspace_mount_path=None,
|
|
)
|
|
agent_config = AgentConfig(
|
|
codeact_enable_jupyter=False,
|
|
codeact_enable_browsing=False,
|
|
codeact_enable_llm_editor=False,
|
|
)
|
|
config.set_agent_config(agent_config)
|
|
return config
|
|
|
|
|
|
def initialize_runtime(
|
|
runtime: Runtime,
|
|
):
|
|
"""Initialize the runtime for the agent.
|
|
|
|
This function is called before the runtime is used to run the agent.
|
|
"""
|
|
logger.info('-' * 30)
|
|
logger.info('BEGIN Runtime Initialization Fn')
|
|
logger.info('-' * 30)
|
|
obs: CmdOutputObservation
|
|
|
|
action = CmdRunAction(command="""export USER=$(whoami); echo USER=${USER} """)
|
|
action.set_hard_timeout(600)
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
|
|
assert_and_raise(obs.exit_code == 0, f'Failed to export USER: {str(obs)}')
|
|
|
|
action = CmdRunAction(command='mkdir -p /dummy_dir')
|
|
action.set_hard_timeout(600)
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
|
|
assert_and_raise(
|
|
obs.exit_code == 0,
|
|
f'Failed to create /dummy_dir: {str(obs)}',
|
|
)
|
|
|
|
with tempfile.TemporaryDirectory() as temp_dir:
|
|
|
|
temp_file_path = os.path.join(temp_dir, 'dummy_file')
|
|
|
|
with open(temp_file_path, 'w') as f:
|
|
f.write('dummy content')
|
|
|
|
|
|
runtime.copy_to(temp_file_path, '/dummy_dir/')
|
|
|
|
logger.info('-' * 30)
|
|
logger.info('END Runtime Initialization Fn')
|
|
logger.info('-' * 30)
|
|
|
|
|
|
def process_instance(
|
|
instance: pd.Series,
|
|
metadata: EvalMetadata,
|
|
reset_logger: bool = True,
|
|
) -> EvalOutput:
|
|
config = get_config(metadata)
|
|
|
|
|
|
if reset_logger:
|
|
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
|
|
reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir)
|
|
else:
|
|
logger.info(f'Starting evaluation for instance {instance.instance_id}.')
|
|
|
|
runtime = create_runtime(config, headless_mode=False)
|
|
call_async_from_sync(runtime.connect)
|
|
|
|
try:
|
|
initialize_runtime(runtime)
|
|
|
|
instruction = 'dummy instruction'
|
|
agent = Agent.get_cls(metadata.agent_class)(
|
|
llm=LLM(config=metadata.llm_config),
|
|
config=config.get_agent_config(metadata.agent_class),
|
|
)
|
|
|
|
def next_command(*args, **kwargs):
|
|
return CmdRunAction(command='ls -lah')
|
|
|
|
agent.step = MagicMock(side_effect=next_command)
|
|
|
|
|
|
state: State | None = asyncio.run(
|
|
run_controller(
|
|
config=config,
|
|
initial_user_action=MessageAction(content=instruction),
|
|
runtime=runtime,
|
|
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[
|
|
metadata.agent_class
|
|
],
|
|
agent=agent,
|
|
)
|
|
)
|
|
|
|
|
|
if (
|
|
state.last_error
|
|
and 'fatal error during agent execution' in state.last_error
|
|
and 'stuck in a loop' not in state.last_error
|
|
):
|
|
raise EvalException('Fatal error detected: ' + state.last_error)
|
|
|
|
finally:
|
|
runtime.close()
|
|
|
|
test_result = {}
|
|
if state is None:
|
|
raise ValueError('State should not be None.')
|
|
histories = [event_to_dict(event) for event in state.history]
|
|
metrics = state.metrics.get() if state.metrics else None
|
|
|
|
|
|
output = EvalOutput(
|
|
instance_id=instance.instance_id,
|
|
instruction=instruction,
|
|
instance=instance.to_dict(),
|
|
test_result=test_result,
|
|
metadata=metadata,
|
|
history=histories,
|
|
metrics=metrics,
|
|
error=state.last_error if state and state.last_error else None,
|
|
)
|
|
return output
|
|
|
|
|
|
@pytest.mark.skipif(
|
|
TEST_IN_CI,
|
|
reason='This test should only be run locally, not in CI.',
|
|
)
|
|
def test_stress_remote_runtime(n_eval_workers: int = 64):
|
|
"""Mimic evaluation setting to test remote runtime in a multi-processing setting."""
|
|
|
|
llm_config = LLMConfig()
|
|
metadata = make_metadata(
|
|
llm_config,
|
|
'dummy_dataset_descrption',
|
|
'CodeActAgent',
|
|
max_iterations=10,
|
|
eval_note='dummy_eval_note',
|
|
eval_output_dir='./dummy_eval_output_dir',
|
|
details={},
|
|
)
|
|
|
|
|
|
dummy_instance = pd.DataFrame(
|
|
{
|
|
'instance_id': [f'dummy_instance_{i}' for i in range(300)],
|
|
}
|
|
)
|
|
|
|
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
|
|
instances = prepare_dataset(
|
|
dummy_instance, output_file, eval_n_limit=len(dummy_instance)
|
|
)
|
|
|
|
run_evaluation(instances, metadata, output_file, n_eval_workers, process_instance)
|
|
|