import json import logging import multiprocessing as mp import os import pathlib import signal import subprocess import time import traceback from contextlib import contextmanager from inspect import signature from typing import Any, Awaitable, Callable, TextIO import pandas as pd from pydantic import BaseModel from tqdm import tqdm from openhands.controller.state.state import State from openhands.core.config import LLMConfig from openhands.core.config.condenser_config import ( CondenserConfig, NoOpCondenserConfig, ) from openhands.core.exceptions import ( AgentRuntimeBuildError, AgentRuntimeDisconnectedError, AgentRuntimeError, AgentRuntimeNotFoundError, AgentRuntimeNotReadyError, AgentRuntimeTimeoutError, AgentRuntimeUnavailableError, ) from openhands.core.logger import get_console_handler from openhands.core.logger import openhands_logger as logger from openhands.events.action import Action from openhands.events.action.message import MessageAction from openhands.events.event import Event from openhands.events.serialization.event import event_to_dict from openhands.events.utils import get_pairs_from_events from openhands.memory.condenser import get_condensation_metadata class EvalMetadata(BaseModel): agent_class: str llm_config: LLMConfig max_iterations: int eval_output_dir: str start_time: str git_commit: str dataset: str | None = None data_split: str | None = None details: dict[str, Any] | None = None condenser_config: CondenserConfig | None = None class EvalOutput(BaseModel): # NOTE: User-specified instance_id: str # output of the evaluation # store anything that is needed for the score calculation test_result: dict[str, Any] instruction: str | None = None # Interaction info metadata: EvalMetadata | None = None # list[tuple[dict[str, Any], dict[str, Any]]] - for compatibility with the old format history: ( list[dict[str, Any]] | list[tuple[dict[str, Any], dict[str, Any]]] | None ) = None metrics: dict[str, Any] | None = None error: str | None = None # Optionally save the input test instance instance: dict[str, Any] | None = None class EvalException(Exception): pass class EvalTimeoutException(Exception): pass @contextmanager def timeout(seconds: int): def timeout_handler(signum, frame): raise EvalTimeoutException(f'Function timed out after {seconds} seconds') # Set up the signal handler original_handler = signal.signal(signal.SIGALRM, timeout_handler) signal.alarm(seconds) try: yield finally: # Restore the original handler and disable the alarm signal.alarm(0) signal.signal(signal.SIGALRM, original_handler) def codeact_user_response( state: State, encapsulate_solution: bool = False, try_parse: Callable[[Action], str] | None = None, ) -> str: encaps_str = ( ( 'Please encapsulate your final answer (answer ONLY) within and .\n' 'For example: The answer to the question is 42 .\n' ) if encapsulate_solution else '' ) msg = ( 'Please continue working on the task on whatever approach you think is suitable.\n' 'If you think you have solved the task, please first send your answer to user through message and then finish the interaction.\n' f'{encaps_str}' 'IMPORTANT: YOU SHOULD NEVER ASK FOR HUMAN HELP.\n' ) if state.history: # check if the last action has an answer, if so, early exit if try_parse is not None: last_action = next( ( event for event in reversed(state.history) if isinstance(event, Action) ), None, ) ans = try_parse(last_action) if ans is not None: return '/exit' # check if the agent has tried to talk to the user 3 times, if so, let the agent know it can give up user_msgs = [ event for event in state.history if isinstance(event, MessageAction) and event.source == 'user' ] if len(user_msgs) >= 2: # let the agent know that it can give up when it has tried 3 times return ( msg + 'If you want to give up, use the "finish" tool to finish the interaction.\n' ) return msg def cleanup(): print('Cleaning up child processes...') for process in mp.active_children(): print(f'Terminating child process: {process.name}') process.terminate() process.join() def make_metadata( llm_config: LLMConfig, dataset_name: str, agent_class: str, max_iterations: int, eval_note: str | None, eval_output_dir: str, data_split: str | None = None, details: dict[str, Any] | None = None, condenser_config: CondenserConfig | None = None, ) -> EvalMetadata: model_name = llm_config.model.split('/')[-1] model_path = model_name.replace(':', '_').replace('@', '-') eval_note = f'_N_{eval_note}' if eval_note else '' eval_output_path = os.path.join( eval_output_dir, dataset_name, agent_class, f'{model_path}_maxiter_{max_iterations}{eval_note}', ) pathlib.Path(eval_output_path).mkdir(parents=True, exist_ok=True) pathlib.Path(os.path.join(eval_output_path, 'logs')).mkdir( parents=True, exist_ok=True ) logger.info(f'Using evaluation output directory: {eval_output_path}') metadata = EvalMetadata( agent_class=agent_class, llm_config=llm_config, max_iterations=max_iterations, eval_output_dir=eval_output_path, start_time=time.strftime('%Y-%m-%d %H:%M:%S'), git_commit=subprocess.check_output(['git', 'rev-parse', 'HEAD']) .decode('utf-8') .strip(), dataset=dataset_name, data_split=data_split, details=details, condenser_config=condenser_config if condenser_config else NoOpCondenserConfig(), ) metadata_json = metadata.model_dump_json() logger.info(f'Metadata: {metadata_json}') with open(os.path.join(eval_output_path, 'metadata.json'), 'w') as f: f.write(metadata_json) return metadata def prepare_dataset( dataset: pd.DataFrame, output_file: str, eval_n_limit: int, eval_ids: list[str] | None = None, skip_num: int | None = None, ): assert ( 'instance_id' in dataset.columns ), "Expected 'instance_id' column in the dataset. You should define your own unique identifier for each instance and use it as the 'instance_id' column." id_column = 'instance_id' logger.info(f'Writing evaluation output to {output_file}') finished_ids: set[str] = set() if os.path.exists(output_file): with open(output_file, 'r') as f: for line in f: data = json.loads(line) finished_ids.add(str(data[id_column])) logger.warning( f'\nOutput file {output_file} already exists. Loaded {len(finished_ids)} finished instances.' ) if eval_ids: eval_ids_converted = [dataset[id_column].dtype.type(id) for id in eval_ids] dataset = dataset[dataset[id_column].isin(eval_ids_converted)] logger.info(f'Limiting evaluation to {len(eval_ids)} specific instances.') elif skip_num and skip_num >= 0: skip_num = min(skip_num, len(dataset)) dataset = dataset.iloc[skip_num:] logger.info( f'Starting evaluation with skipping first {skip_num} instances ({len(dataset)} instances to run).' ) if eval_n_limit and eval_n_limit > 0: dataset = dataset.head(eval_n_limit) logger.info(f'Limiting evaluation to {eval_n_limit} instances.') elif eval_n_limit and eval_n_limit > 0: dataset = dataset.head(eval_n_limit) logger.info(f'Limiting evaluation to first {eval_n_limit} instances.') new_dataset = [ instance for _, instance in dataset.iterrows() if str(instance[id_column]) not in finished_ids ] logger.info( f'Finished instances: {len(finished_ids)}, Remaining instances: {len(new_dataset)}' ) return pd.DataFrame(new_dataset) def update_progress( result: EvalOutput, pbar: tqdm, output_fp: TextIO, ): """Update the progress bar and write the result to the output file.""" pbar.update(1) pbar.set_description(f'Instance {result.instance_id}') pbar.set_postfix_str(f'Test Result: {str(result.test_result)[:300]}...') logger.info( f'Finished evaluation for instance {result.instance_id}: {str(result.test_result)[:300]}...\n' ) output_fp.write(result.model_dump_json() + '\n') output_fp.flush() def assert_and_raise(condition: bool, msg: str): """Raise an EvalException if the condition is not met. This will be used in conjunction with _process_instance_wrapper to handle retries. An EvalException should trigger a retry. """ if not condition: raise EvalException(msg) def _process_instance_wrapper( process_instance_func: Callable[[pd.Series, EvalMetadata, bool], EvalOutput], instance: pd.Series, metadata: EvalMetadata, use_mp: bool, max_retries: int = 5, timeout_seconds: int | None = None, ) -> EvalOutput: """Wrap the process_instance_func to handle retries and errors.""" runtime_failure_count = 0 for attempt in range(max_retries + 1): try: kwargs = {} # check if process_instance_func accepts timeout_seconds parameter sig = signature(process_instance_func) if 'runtime_failure_count' in sig.parameters: kwargs['runtime_failure_count'] = runtime_failure_count if timeout_seconds is not None: with timeout(timeout_seconds): result = process_instance_func(instance, metadata, use_mp, **kwargs) else: result = process_instance_func(instance, metadata, use_mp, **kwargs) return result except EvalTimeoutException as e: error = f'Timeout after {timeout_seconds} seconds' stacktrace = traceback.format_exc() msg = ( '-' * 10 + '\n' + f'Timeout ({timeout_seconds} seconds) in instance [{instance.instance_id}], Stopped evaluation for this instance.' + '\n' + '-' * 10 ) logger.exception(e) return EvalOutput( instance_id=instance.instance_id, test_result={}, error=error, ) except Exception as e: error = str(e) stacktrace = traceback.format_exc() if attempt == max_retries: msg = ( '-' * 10 + '\n' + f'Error in instance [{instance.instance_id}]: {error}. Stacktrace:\n{stacktrace}' + '\n' + f'[Encountered after {max_retries} retries. Please check the logs and report the issue.]' + '-' * 10 ) # Raise an error after all retries & stop the evaluation logger.exception(e) raise RuntimeError( f'Maximum error retries reached for instance {instance.instance_id}' ) from e msg = ( '-' * 10 + '\n' + f'Error in instance [{instance.instance_id}]: {error}. Stacktrace:\n{stacktrace}' + '\n' + '-' * 10 + f'[The above error occurred. Retrying... (attempt {attempt + 1} of {max_retries})]' + '-' * 10 + '\n' ) # e is likely an EvalException, so we can't directly infer it from type # but rather check if it's a fatal error # But it can also be AgentRuntime**Error (e.g., swe_bench/eval_infer.py) _error_str = type(e).__name__ + ': ' + str(e) if is_fatal_runtime_error(_error_str): runtime_failure_count += 1 msg += f'Runtime disconnected error detected for instance {instance.instance_id}, runtime failure count: {runtime_failure_count}' msg += '\n' + '-' * 10 + '\n' logger.error(msg) time.sleep(5) def _process_instance_wrapper_mp(args): """Wrapper for multiprocessing, especially for imap_unordered.""" return _process_instance_wrapper(*args) def run_evaluation( dataset: pd.DataFrame, metadata: EvalMetadata | None, output_file: str, num_workers: int, process_instance_func: Callable[ [pd.Series, EvalMetadata, bool], Awaitable[EvalOutput] ], max_retries: int = 5, # number of retries for each instance timeout_seconds: int | None = None, ): use_multiprocessing = num_workers > 1 if metadata is not None: logger.info( f'Evaluation started with Agent {metadata.agent_class}:\n' f'model {metadata.llm_config.model}, max iterations {metadata.max_iterations}.\n' ) else: logger.warning('Running evaluation without metadata.') logger.info(f'Evaluation started with {num_workers} workers.') total_instances = len(dataset) pbar = tqdm(total=total_instances, desc='Instances processed') output_fp = open(output_file, 'a') try: if use_multiprocessing: with mp.Pool(num_workers) as pool: args_iter = ( ( process_instance_func, instance, metadata, True, max_retries, timeout_seconds, ) for _, instance in dataset.iterrows() ) results = pool.imap_unordered(_process_instance_wrapper_mp, args_iter) for result in results: update_progress(result, pbar, output_fp) else: for _, instance in dataset.iterrows(): result = _process_instance_wrapper( process_instance_func=process_instance_func, instance=instance, metadata=metadata, use_mp=False, max_retries=max_retries, ) update_progress(result, pbar, output_fp) except KeyboardInterrupt: print('\nKeyboardInterrupt received. Cleaning up...\n') cleanup() output_fp.close() logger.info('\nEvaluation finished.\n') def reset_logger_for_multiprocessing( logger: logging.Logger, instance_id: str, log_dir: str ): """Reset the logger for multiprocessing. Save logs to a separate file for each process, instead of trying to write to the same file/console from multiple processes. """ # Set up logger log_file = os.path.join( log_dir, f'instance_{instance_id}.log', ) # Remove all existing handlers from logger for handler in logger.handlers[:]: logger.removeHandler(handler) # add console handler to print ONE line console_handler = get_console_handler(log_level=logging.INFO) console_handler.setFormatter( logging.Formatter( f'Instance {instance_id} - ' + '%(asctime)s - %(levelname)s - %(message)s' ) ) logger.addHandler(console_handler) logger.info( f'Starting evaluation for instance {instance_id}.\n' f'Hint: run "tail -f {log_file}" to see live logs in a separate shell' ) # Only log WARNING or higher to console console_handler.setLevel(logging.WARNING) # Log INFO and above to file os.makedirs(os.path.dirname(log_file), exist_ok=True) file_handler = logging.FileHandler(log_file) file_handler.setFormatter( logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') ) file_handler.setLevel(logging.INFO) logger.addHandler(file_handler) def update_llm_config_for_completions_logging( llm_config: LLMConfig, eval_output_dir: str, instance_id: str, ) -> LLMConfig: """Update the LLM config for logging completions.""" if llm_config.log_completions: llm_config.log_completions_folder = os.path.join( eval_output_dir, 'llm_completions', instance_id ) logger.info( f'Logging LLM completions for instance {instance_id} to ' f'{llm_config.log_completions_folder}' ) return llm_config # history is now available as a filtered stream of events, rather than list of pairs of (Action, Observation) # we rebuild the pairs here # for compatibility with the existing output format in evaluations # remove this when it's no longer necessary def compatibility_for_eval_history_pairs( history: list[Event], ) -> list[tuple[dict, dict]]: history_pairs = [] for action, observation in get_pairs_from_events(history): history_pairs.append((event_to_dict(action), event_to_dict(observation))) return history_pairs def is_fatal_evaluation_error(error: str | None) -> bool: if not error: return False FATAL_EXCEPTIONS = [ AgentRuntimeError, AgentRuntimeBuildError, AgentRuntimeTimeoutError, AgentRuntimeUnavailableError, AgentRuntimeNotReadyError, AgentRuntimeDisconnectedError, AgentRuntimeNotFoundError, ConnectionError, ] if any(exception.__name__ in error for exception in FATAL_EXCEPTIONS): logger.error(f'Fatal evaluation error detected: {error}') return True return False def is_fatal_runtime_error(error: str | None) -> bool: if not error: return False FATAL_RUNTIME_ERRORS = [ AgentRuntimeTimeoutError, AgentRuntimeUnavailableError, AgentRuntimeDisconnectedError, AgentRuntimeNotFoundError, ] if any(exception.__name__ in error for exception in FATAL_RUNTIME_ERRORS): logger.error(f'Fatal runtime error detected: {error}') return True return False def get_metrics(state: State) -> dict[str, Any]: """Extract metrics from the state.""" metrics = state.metrics.get() if state.metrics else {} metrics['condenser'] = get_condensation_metadata(state) return metrics