Spaces:
Running
on
Zero
Running
on
Zero
CRITICAL FIX: Replace deprecated gr.Row.update() with gr.update() for Gradio 5.x compatibility + ASM branding
Browse files
app.py
CHANGED
@@ -281,11 +281,11 @@ def split_image(image: Image.Image) -> List[Image.Image]:
|
|
281 |
|
282 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
283 |
gr.Markdown("""
|
284 |
-
##
|
285 |
* Upload an image and click "Generate" to create a 3D asset. If the image has alpha channel, it be used as the mask. Otherwise, we use `rembg` to remove the background.
|
286 |
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
|
287 |
|
288 |
-
✨
|
289 |
""")
|
290 |
|
291 |
with gr.Row():
|
@@ -366,11 +366,11 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
366 |
demo.unload(end_session)
|
367 |
|
368 |
single_image_input_tab.select(
|
369 |
-
lambda: tuple([False, gr.
|
370 |
outputs=[is_multiimage, single_image_example, multiimage_example]
|
371 |
)
|
372 |
multiimage_input_tab.select(
|
373 |
-
lambda: tuple([True, gr.
|
374 |
outputs=[is_multiimage, single_image_example, multiimage_example]
|
375 |
)
|
376 |
|
|
|
281 |
|
282 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
283 |
gr.Markdown("""
|
284 |
+
## ASM - Advanced Spatial Modeling for 3D Generation
|
285 |
* Upload an image and click "Generate" to create a 3D asset. If the image has alpha channel, it be used as the mask. Otherwise, we use `rembg` to remove the background.
|
286 |
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
|
287 |
|
288 |
+
✨Features: 1) Multi-image support. 2) Gaussian file extraction. 3) Advanced 3D generation.
|
289 |
""")
|
290 |
|
291 |
with gr.Row():
|
|
|
366 |
demo.unload(end_session)
|
367 |
|
368 |
single_image_input_tab.select(
|
369 |
+
lambda: tuple([False, gr.update(visible=True), gr.update(visible=False)]),
|
370 |
outputs=[is_multiimage, single_image_example, multiimage_example]
|
371 |
)
|
372 |
multiimage_input_tab.select(
|
373 |
+
lambda: tuple([True, gr.update(visible=False), gr.update(visible=True)]),
|
374 |
outputs=[is_multiimage, single_image_example, multiimage_example]
|
375 |
)
|
376 |
|