Upload app (20).py
Browse files- app (20).py +106 -0
app (20).py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import InferenceClient
|
3 |
+
|
4 |
+
"""
|
5 |
+
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
+
"""
|
7 |
+
# client = InferenceClient("meta-llama/Meta-Llama-3.1-8B-Instruct")
|
8 |
+
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
9 |
+
|
10 |
+
|
11 |
+
def respond(
|
12 |
+
message,
|
13 |
+
history: list[tuple[str, str]],
|
14 |
+
system_message,
|
15 |
+
max_tokens,
|
16 |
+
temperature,
|
17 |
+
top_p,
|
18 |
+
):
|
19 |
+
messages = [{"role": "system", "content": system_message}]
|
20 |
+
|
21 |
+
for val in history:
|
22 |
+
if val[0]:
|
23 |
+
messages.append({"role": "user", "content": val[0]})
|
24 |
+
if val[1]:
|
25 |
+
messages.append({"role": "assistant", "content": val[1]})
|
26 |
+
|
27 |
+
messages.append({"role": "user", "content": message})
|
28 |
+
|
29 |
+
response = ""
|
30 |
+
|
31 |
+
for message in client.chat_completion(
|
32 |
+
messages,
|
33 |
+
max_tokens=max_tokens,
|
34 |
+
stream=True,
|
35 |
+
temperature=temperature,
|
36 |
+
top_p=top_p,
|
37 |
+
):
|
38 |
+
token = message.choices[0].delta.content
|
39 |
+
|
40 |
+
response += token
|
41 |
+
yield response
|
42 |
+
|
43 |
+
"""
|
44 |
+
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
+
"""
|
46 |
+
demo = gr.ChatInterface(
|
47 |
+
respond,
|
48 |
+
additional_inputs=[
|
49 |
+
gr.Textbox(value="Act as a Prompt Enhancer AI that takes user-input prompts and transforms them into more engaging, detailed, and thought-provoking questions. Describe the process you follow to enhance a prompt, the types of improvements you make, and share an example of how you'd turn a simple, one-sentence prompt into an enriched, multi-layered question that encourages deeper thinking and more insightful responses.", label="System message"),
|
50 |
+
gr.Slider(minimum=1, maximum=2048, value=1536, step=1, label="Max new tokens"),
|
51 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
+
gr.Slider(
|
53 |
+
minimum=0.1,
|
54 |
+
maximum=1.0,
|
55 |
+
value=0.95,
|
56 |
+
step=0.05,
|
57 |
+
label="Top-p (nucleus sampling)",
|
58 |
+
),
|
59 |
+
],
|
60 |
+
)
|
61 |
+
|
62 |
+
|
63 |
+
if __name__ == "__main__":
|
64 |
+
demo.launch()
|
65 |
+
#####################################
|
66 |
+
# import gradio as gr
|
67 |
+
|
68 |
+
# gr.load("models/meta-llama/Meta-Llama-3.1-70B-Instruct").launch()
|
69 |
+
########################################
|
70 |
+
# from openai import OpenAI
|
71 |
+
# import streamlit as st
|
72 |
+
# import os
|
73 |
+
# import sys
|
74 |
+
# from dotenv import load_dotenv, dotenv_values
|
75 |
+
# load_dotenv()
|
76 |
+
|
77 |
+
# st.title("ChatGPT-like clone")
|
78 |
+
|
79 |
+
# client = OpenAI(api_key=os.environ.get["OPENAI_API_KEY"])
|
80 |
+
|
81 |
+
# if "openai_model" not in st.session_state:
|
82 |
+
# st.session_state["openai_model"] = "gpt-3.5-turbo"
|
83 |
+
|
84 |
+
# if "messages" not in st.session_state:
|
85 |
+
# st.session_state.messages = []
|
86 |
+
|
87 |
+
# for message in st.session_state.messages:
|
88 |
+
# with st.chat_message(message["role"]):
|
89 |
+
# st.markdown(message["content"])
|
90 |
+
|
91 |
+
# if prompt := st.chat_input("What is up?"):
|
92 |
+
# st.session_state.messages.append({"role": "user", "content": prompt})
|
93 |
+
# with st.chat_message("user"):
|
94 |
+
# st.markdown(prompt)
|
95 |
+
|
96 |
+
# with st.chat_message("assistant"):
|
97 |
+
# stream = client.chat.completions.create(
|
98 |
+
# model=st.session_state["openai_model"],
|
99 |
+
# messages=[
|
100 |
+
# {"role": m["role"], "content": m["content"]}
|
101 |
+
# for m in st.session_state.messages
|
102 |
+
# ],
|
103 |
+
# stream=True,
|
104 |
+
# )
|
105 |
+
# response = st.write_stream(stream)
|
106 |
+
# st.session_state.messages.append({"role": "assistant", "content": response})
|