arachn0id commited on
Commit
f3d9e94
·
verified ·
1 Parent(s): 7948104

Upload 7 files

Browse files
Files changed (7) hide show
  1. .gitattributes +35 -35
  2. README.md +13 -13
  3. app.py +79 -5
  4. env.py +1 -0
  5. func.py +49 -0
  6. functions.py +49 -0
  7. news_scraper.py +84 -0
.gitattributes CHANGED
@@ -1,35 +1,35 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
- *.pt filter=lfs diff=lfs merge=lfs -text
23
- *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,13 +1,13 @@
1
- ---
2
- title: Finance Tracker
3
- emoji: 🐢
4
- colorFrom: purple
5
- colorTo: purple
6
- sdk: streamlit
7
- sdk_version: 1.35.0
8
- app_file: app.py
9
- pinned: false
10
- license: mit
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
+ ---
2
+ title: Finance Tracker
3
+ emoji: 🐢
4
+ colorFrom: purple
5
+ colorTo: purple
6
+ sdk: streamlit
7
+ sdk_version: 1.35.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: mit
11
+ ---
12
+
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py CHANGED
@@ -1,5 +1,79 @@
1
- import streamlit as st
2
-
3
-
4
- x = st.slider("Select a value")
5
- st.write(x, "squared is", x * x)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import pipeline
3
+ import google.generativeai as genai
4
+ import yfinance as yf
5
+ import matplotlib.pyplot as plt
6
+ import pandas as pd
7
+ import func
8
+ import news_scraper
9
+ import requests
10
+ from bs4 import BeautifulSoup
11
+ import json
12
+
13
+ #
14
+
15
+ # S E T U P
16
+
17
+ #
18
+
19
+ # TODO: deploy
20
+
21
+ fin_data = ""
22
+ pipe = pipeline(
23
+ "text-classification",
24
+ model="mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis",
25
+ )
26
+ API_KEY = "AIzaSyDnRd4-UvV4U9oYcZfLXRT224pnU0KwEao"
27
+ model = genai.GenerativeModel("gemini-1.5-flash")
28
+ genai.configure(api_key=API_KEY)
29
+ fig = plt.figure(figsize=(4, 4))
30
+
31
+
32
+ st.title("Stock Analysis and Prediction")
33
+
34
+
35
+ # FIN INDICATOR CHARTS AND MODELS
36
+ stock_name = st.text_input(label="enter the ticker name")
37
+ # news_scraper
38
+ history = yf.download(stock_name, start="2023-01-01")
39
+ stck = yf.Ticker(stock_name)
40
+
41
+ dict = stck.info
42
+ # st.write(dict)
43
+ df = pd.DataFrame.from_dict(dict, orient="index")
44
+ df = df.reset_index()
45
+ df_str = df.to_string()
46
+ st.write(df_str)
47
+ keywords = [stock_name, "finance", "news news news"]
48
+ news_scraper.perform_search(keywords)
49
+
50
+ with open("results.json", "r", encoding="utf-8") as f:
51
+ data = json.load(f)
52
+
53
+ text_descriptions = ""
54
+ for frame in data:
55
+
56
+ text_descriptions += "Title: " + frame["Title"]
57
+ text_descriptions += " " + (frame["Description"])
58
+
59
+ st.write(text_descriptions)
60
+ # SENTIMENT TRACKER
61
+ # TODO : CONNECT THE SCRAPER TO THE SENTIMENT PIPELINE
62
+ output_sentiment = pipe(text_descriptions)
63
+ st.write(output_sentiment)
64
+
65
+ prompt = f"You are a financial analyst, given relevant data provide only the pros and cons of the stock provide a buy reccomendation on a scale of 1 to 10. This is the financial data {df_str} . Consider the following news : {text_descriptions}, also here is a sentiment score of the recent news{output_sentiment}."
66
+
67
+
68
+ # GEMINI API RESPONSE CODE
69
+ response = model.generate_content(prompt)
70
+ st.write(response.text)
71
+
72
+
73
+ # st.line_chart(history["Close"])
74
+ fig1 = func.plot_column(history, "Close")
75
+ st.pyplot(fig1)
76
+ st.write("% Change")
77
+ fig2 = func.plot_column(history, "Volume")
78
+ st.line_chart(history["Close"].pct_change())
79
+ st.pyplot(fig2)
env.py ADDED
@@ -0,0 +1 @@
 
 
1
+ global API_KEY
func.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import matplotlib.pyplot as plt
2
+ import numpy as np
3
+
4
+
5
+ # HELPER FUNCTIONS:
6
+ def plot_column(dataframe, column_name):
7
+ plt.figure(figsize=(6, 3))
8
+ plt.plot(dataframe[column_name])
9
+ plt.title(f"Plot of {column_name}")
10
+ plt.xlabel("Index")
11
+ plt.ylabel(column_name)
12
+ plt.grid(True)
13
+ return plt
14
+
15
+
16
+ # Calculate EMA
17
+ def ema(close, period=20):
18
+ return close.ewm(span=period, adjust=False).mean()
19
+
20
+
21
+ # Calculate RSI
22
+ def rsi(close, period=14):
23
+ delta = close.diff()
24
+ gain, loss = delta.copy(), delta.copy()
25
+ gain[gain < 0] = 0
26
+ loss[loss > 0] = 0
27
+ avg_gain = gain.rolling(period).mean()
28
+ avg_loss = abs(loss.rolling(period).mean())
29
+ rs = avg_gain / avg_loss
30
+ rsi = 100.0 - (100.0 / (1.0 + rs))
31
+ return rsi
32
+
33
+
34
+ # Calculate MACD
35
+ def macd(close, fast_period=12, slow_period=26, signal_period=9):
36
+ fast_ema = close.ewm(span=fast_period, adjust=False).mean()
37
+ slow_ema = close.ewm(span=slow_period, adjust=False).mean()
38
+ macd_line = fast_ema - slow_ema
39
+ signal_line = macd_line.ewm(span=signal_period, adjust=False).mean()
40
+ histogram = macd_line - signal_line
41
+ return macd_line
42
+
43
+
44
+ # Calculate OBV
45
+ def obv(close, volume):
46
+ obv = np.where(
47
+ close > close.shift(), volume, np.where(close < close.shift(), -volume, 0)
48
+ ).cumsum()
49
+ return obv
functions.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import matplotlib.pyplot as plt
2
+ import numpy as np
3
+
4
+
5
+ # HELPER FUNCTIONS:
6
+ def plot_column(dataframe, column_name):
7
+ plt.figure(figsize=(6, 3))
8
+ plt.plot(dataframe[column_name])
9
+ plt.title(f"Plot of {column_name}")
10
+ plt.xlabel("Index")
11
+ plt.ylabel(column_name)
12
+ plt.grid(True)
13
+ return plt
14
+
15
+
16
+ # Calculate EMA
17
+ def ema(close, period=20):
18
+ return close.ewm(span=period, adjust=False).mean()
19
+
20
+
21
+ # Calculate RSI
22
+ def rsi(close, period=14):
23
+ delta = close.diff()
24
+ gain, loss = delta.copy(), delta.copy()
25
+ gain[gain < 0] = 0
26
+ loss[loss > 0] = 0
27
+ avg_gain = gain.rolling(period).mean()
28
+ avg_loss = abs(loss.rolling(period).mean())
29
+ rs = avg_gain / avg_loss
30
+ rsi = 100.0 - (100.0 / (1.0 + rs))
31
+ return rsi
32
+
33
+
34
+ # Calculate MACD
35
+ def macd(close, fast_period=12, slow_period=26, signal_period=9):
36
+ fast_ema = close.ewm(span=fast_period, adjust=False).mean()
37
+ slow_ema = close.ewm(span=slow_period, adjust=False).mean()
38
+ macd_line = fast_ema - slow_ema
39
+ signal_line = macd_line.ewm(span=signal_period, adjust=False).mean()
40
+ histogram = macd_line - signal_line
41
+ return macd_line
42
+
43
+
44
+ # Calculate OBV
45
+ def obv(close, volume):
46
+ obv = np.where(
47
+ close > close.shift(), volume, np.where(close < close.shift(), -volume, 0)
48
+ ).cumsum()
49
+ return obv
news_scraper.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import requests
2
+ from bs4 import BeautifulSoup
3
+ import json
4
+
5
+ excluded_urls = ["finance.yahoo.com", "google.com/finance"]
6
+
7
+
8
+ def search_duckduckgo(keywords):
9
+ url = f"https://duckduckgo.com/html/?q={'+'.join(keywords)}"
10
+ headers = {
11
+ "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3"
12
+ }
13
+
14
+ try:
15
+ response = requests.get(url, headers=headers)
16
+ response.raise_for_status()
17
+ return response.text
18
+ except requests.exceptions.RequestException as e:
19
+ print(f"Error fetching search results: {e}")
20
+ return ""
21
+
22
+
23
+ def parse_results(html, keywords):
24
+ soup = BeautifulSoup(html, "html.parser")
25
+ results = soup.select(".result")
26
+ parsed_results = []
27
+
28
+ for result in results:
29
+ try:
30
+ link = result.select_one(".result__a").get(
31
+ "href"
32
+ ) # Changed selector for link
33
+ title = result.select_one(".result__a").text # Changed selector for title
34
+ description = result.select_one(
35
+ ".result__snippet"
36
+ ) # Kept the same selector for description
37
+
38
+ if description:
39
+ description = description.text
40
+ else:
41
+ description = ""
42
+
43
+ result_data = {
44
+ "Link": link,
45
+ "Title": title,
46
+ "Description": description,
47
+ }
48
+
49
+ # Check if the link is not in excluded URLs
50
+ if not any(excluded_url in link for excluded_url in excluded_urls):
51
+ # Check if any keyword is in title, description, or link
52
+ if any(
53
+ keyword.lower() in result_data["Title"].lower()
54
+ or keyword.lower() in result_data["Description"].lower()
55
+ or keyword.lower() in result_data["Link"].lower()
56
+ for keyword in keywords
57
+ ):
58
+ print(result_data)
59
+ parsed_results.append(result_data)
60
+ except Exception as e:
61
+ print(f"Error parsing result: {e}")
62
+
63
+ return parsed_results
64
+
65
+
66
+ # keywords = ["tatasteel", "finance", "news"]
67
+
68
+
69
+ def perform_search(keywords):
70
+ html = search_duckduckgo(keywords)
71
+
72
+ if html:
73
+ results = parse_results(html, keywords)
74
+ if results:
75
+ with open("results.json", "w", encoding="utf-8") as f:
76
+ json.dump(results, f, ensure_ascii=False, indent=4)
77
+ else:
78
+ print("No results found.")
79
+ else:
80
+ print("Failed to fetch search results.")
81
+
82
+
83
+ # if __name__ == "__main__":
84
+ # perform_search(keywords = keywords)