Update index.html
Browse files- index.html +1941 -18
index.html
CHANGED
@@ -1,19 +1,1942 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
</html>
|
|
|
1 |
+
<!-- Vector Search Simulation By Pejman Ebrahimi -->
|
2 |
+
<!DOCTYPE html>
|
3 |
+
<html lang="en">
|
4 |
+
<head>
|
5 |
+
<meta charset="UTF-8" />
|
6 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
7 |
+
<title>Vector Search Methods Comparison</title>
|
8 |
+
<style>
|
9 |
+
body {
|
10 |
+
font-family: "Segoe UI", Tahoma, Geneva, Verdana, sans-serif;
|
11 |
+
line-height: 1.6;
|
12 |
+
color: #333;
|
13 |
+
max-width: 1200px;
|
14 |
+
margin: 0 auto;
|
15 |
+
padding: 20px;
|
16 |
+
background-color: #f5f7fa;
|
17 |
+
}
|
18 |
+
|
19 |
+
h1,
|
20 |
+
h2,
|
21 |
+
h3 {
|
22 |
+
color: #2c3e50;
|
23 |
+
}
|
24 |
+
|
25 |
+
h1 {
|
26 |
+
text-align: center;
|
27 |
+
margin-bottom: 40px;
|
28 |
+
font-size: 2.2em;
|
29 |
+
border-bottom: 2px solid #3498db;
|
30 |
+
padding-bottom: 10px;
|
31 |
+
}
|
32 |
+
|
33 |
+
.container {
|
34 |
+
display: flex;
|
35 |
+
flex-wrap: wrap;
|
36 |
+
gap: 20px;
|
37 |
+
justify-content: center;
|
38 |
+
}
|
39 |
+
|
40 |
+
.search-type {
|
41 |
+
flex: 1 1 500px;
|
42 |
+
background: white;
|
43 |
+
border-radius: 8px;
|
44 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
45 |
+
margin-bottom: 30px;
|
46 |
+
overflow: hidden;
|
47 |
+
transition: transform 0.2s;
|
48 |
+
}
|
49 |
+
|
50 |
+
.search-type:hover {
|
51 |
+
transform: translateY(-5px);
|
52 |
+
}
|
53 |
+
|
54 |
+
.search-header {
|
55 |
+
padding: 15px 20px;
|
56 |
+
color: white;
|
57 |
+
font-weight: bold;
|
58 |
+
font-size: 1.2em;
|
59 |
+
}
|
60 |
+
|
61 |
+
.search-content {
|
62 |
+
padding: 20px;
|
63 |
+
position: relative;
|
64 |
+
}
|
65 |
+
|
66 |
+
.enn .search-header {
|
67 |
+
background-color: #3498db;
|
68 |
+
}
|
69 |
+
|
70 |
+
.ann .search-header {
|
71 |
+
background-color: #e74c3c;
|
72 |
+
}
|
73 |
+
|
74 |
+
.semantic .search-header {
|
75 |
+
background-color: #2ecc71;
|
76 |
+
}
|
77 |
+
|
78 |
+
.sparse .search-header {
|
79 |
+
background-color: #9b59b6;
|
80 |
+
}
|
81 |
+
|
82 |
+
.canvas-container {
|
83 |
+
position: relative;
|
84 |
+
height: 300px;
|
85 |
+
width: 100%;
|
86 |
+
background: #f8f9fa;
|
87 |
+
border: 1px solid #ddd;
|
88 |
+
border-radius: 4px;
|
89 |
+
margin-bottom: 15px;
|
90 |
+
overflow: hidden;
|
91 |
+
}
|
92 |
+
|
93 |
+
canvas {
|
94 |
+
display: block;
|
95 |
+
}
|
96 |
+
|
97 |
+
.controls {
|
98 |
+
display: flex;
|
99 |
+
justify-content: space-between;
|
100 |
+
margin-bottom: 15px;
|
101 |
+
flex-wrap: wrap;
|
102 |
+
gap: 10px;
|
103 |
+
}
|
104 |
+
|
105 |
+
select,
|
106 |
+
button {
|
107 |
+
padding: 8px 12px;
|
108 |
+
border-radius: 4px;
|
109 |
+
border: 1px solid #ccc;
|
110 |
+
background: white;
|
111 |
+
font-size: 14px;
|
112 |
+
}
|
113 |
+
|
114 |
+
button {
|
115 |
+
background: #3498db;
|
116 |
+
color: white;
|
117 |
+
border: none;
|
118 |
+
cursor: pointer;
|
119 |
+
transition: background 0.2s;
|
120 |
+
}
|
121 |
+
|
122 |
+
button:hover {
|
123 |
+
background: #2980b9;
|
124 |
+
}
|
125 |
+
|
126 |
+
.step-display {
|
127 |
+
background: #f0f4f8;
|
128 |
+
padding: 15px;
|
129 |
+
border-radius: 4px;
|
130 |
+
margin-top: 15px;
|
131 |
+
font-size: 14px;
|
132 |
+
}
|
133 |
+
|
134 |
+
.step-title {
|
135 |
+
font-weight: bold;
|
136 |
+
margin-bottom: 8px;
|
137 |
+
}
|
138 |
+
|
139 |
+
.step-description {
|
140 |
+
color: #555;
|
141 |
+
}
|
142 |
+
|
143 |
+
ul.features {
|
144 |
+
padding-left: 20px;
|
145 |
+
}
|
146 |
+
|
147 |
+
.features li {
|
148 |
+
margin-bottom: 5px;
|
149 |
+
}
|
150 |
+
|
151 |
+
.distance-formula {
|
152 |
+
font-style: italic;
|
153 |
+
background: #f0f0f0;
|
154 |
+
padding: 5px;
|
155 |
+
border-radius: 4px;
|
156 |
+
margin: 5px 0;
|
157 |
+
display: inline-block;
|
158 |
+
}
|
159 |
+
|
160 |
+
.tooltip {
|
161 |
+
position: absolute;
|
162 |
+
background: rgba(0, 0, 0, 0.8);
|
163 |
+
color: white;
|
164 |
+
padding: 5px 10px;
|
165 |
+
border-radius: 4px;
|
166 |
+
font-size: 12px;
|
167 |
+
z-index: 100;
|
168 |
+
pointer-events: none;
|
169 |
+
display: none;
|
170 |
+
}
|
171 |
+
|
172 |
+
.legend {
|
173 |
+
display: flex;
|
174 |
+
flex-wrap: wrap;
|
175 |
+
gap: 15px;
|
176 |
+
margin-top: 10px;
|
177 |
+
}
|
178 |
+
|
179 |
+
.legend-item {
|
180 |
+
display: flex;
|
181 |
+
align-items: center;
|
182 |
+
font-size: 12px;
|
183 |
+
}
|
184 |
+
|
185 |
+
.legend-color {
|
186 |
+
width: 12px;
|
187 |
+
height: 12px;
|
188 |
+
border-radius: 50%;
|
189 |
+
margin-right: 5px;
|
190 |
+
}
|
191 |
+
|
192 |
+
.tabs {
|
193 |
+
display: flex;
|
194 |
+
margin-bottom: 15px;
|
195 |
+
}
|
196 |
+
|
197 |
+
.tab {
|
198 |
+
padding: 8px 15px;
|
199 |
+
background: #ddd;
|
200 |
+
border: none;
|
201 |
+
cursor: pointer;
|
202 |
+
border-radius: 4px 4px 0 0;
|
203 |
+
margin-right: 2px;
|
204 |
+
}
|
205 |
+
|
206 |
+
.tab.active {
|
207 |
+
background: #f0f4f8;
|
208 |
+
font-weight: bold;
|
209 |
+
}
|
210 |
+
|
211 |
+
.tab-content {
|
212 |
+
display: none;
|
213 |
+
background: #f0f4f8;
|
214 |
+
padding: 15px;
|
215 |
+
border-radius: 0 4px 4px 4px;
|
216 |
+
}
|
217 |
+
|
218 |
+
.tab-content.active {
|
219 |
+
display: block;
|
220 |
+
}
|
221 |
+
|
222 |
+
table {
|
223 |
+
width: 100%;
|
224 |
+
border-collapse: collapse;
|
225 |
+
margin: 15px 0;
|
226 |
+
}
|
227 |
+
|
228 |
+
table th,
|
229 |
+
table td {
|
230 |
+
border: 1px solid #ddd;
|
231 |
+
padding: 8px;
|
232 |
+
text-align: left;
|
233 |
+
}
|
234 |
+
|
235 |
+
table th {
|
236 |
+
background-color: #f0f4f8;
|
237 |
+
}
|
238 |
+
|
239 |
+
tr:nth-child(even) {
|
240 |
+
background-color: #f8f9fa;
|
241 |
+
}
|
242 |
+
|
243 |
+
.comparison-table {
|
244 |
+
margin-top: 40px;
|
245 |
+
}
|
246 |
+
|
247 |
+
/* Responsive adjustments */
|
248 |
+
@media (max-width: 768px) {
|
249 |
+
.search-type {
|
250 |
+
flex: 1 1 100%;
|
251 |
+
}
|
252 |
+
|
253 |
+
.controls {
|
254 |
+
flex-direction: column;
|
255 |
+
}
|
256 |
+
}
|
257 |
+
</style>
|
258 |
+
</head>
|
259 |
+
<body>
|
260 |
+
<h1>Vector Search Methods Comparison Simulation - By Pejman Ebrahimi</h1>
|
261 |
+
|
262 |
+
<div class="container">
|
263 |
+
<!-- ENN Search -->
|
264 |
+
<div class="search-type enn">
|
265 |
+
<div class="search-header">1. Exact Nearest Neighbor Search (ENN)</div>
|
266 |
+
<div class="search-content">
|
267 |
+
<p>
|
268 |
+
Finds the <strong>exact</strong> closest data points to a query by
|
269 |
+
calculating distances to all vectors in the dataset.
|
270 |
+
</p>
|
271 |
+
|
272 |
+
<div class="canvas-container">
|
273 |
+
<canvas id="ennCanvas" width="460" height="300"></canvas>
|
274 |
+
<div id="ennTooltip" class="tooltip"></div>
|
275 |
+
</div>
|
276 |
+
|
277 |
+
<div class="controls">
|
278 |
+
<div>
|
279 |
+
<label for="ennDistance">Distance Metric:</label>
|
280 |
+
<select id="ennDistance">
|
281 |
+
<option value="euclidean">Euclidean (L2)</option>
|
282 |
+
<option value="manhattan">Manhattan (L1)</option>
|
283 |
+
<option value="cosine">Cosine Similarity</option>
|
284 |
+
</select>
|
285 |
+
</div>
|
286 |
+
|
287 |
+
<div>
|
288 |
+
<label for="ennStep">Step:</label>
|
289 |
+
<select id="ennStep">
|
290 |
+
<option value="0">0. Data points</option>
|
291 |
+
<option value="1">1. Calculate all distances</option>
|
292 |
+
<option value="2">2. Sort by distance</option>
|
293 |
+
<option value="3">3. Return nearest neighbors</option>
|
294 |
+
</select>
|
295 |
+
</div>
|
296 |
+
</div>
|
297 |
+
|
298 |
+
<div class="step-display">
|
299 |
+
<div class="step-title" id="ennStepTitle">Step 0: Data points</div>
|
300 |
+
<div class="step-description" id="ennStepDesc">
|
301 |
+
Initial dataset with vectors in feature space. The query point
|
302 |
+
(red) will be compared against all data points.
|
303 |
+
</div>
|
304 |
+
</div>
|
305 |
+
|
306 |
+
<div class="legend">
|
307 |
+
<div class="legend-item">
|
308 |
+
<div class="legend-color" style="background: #3498db"></div>
|
309 |
+
<span>Dataset Points</span>
|
310 |
+
</div>
|
311 |
+
<div class="legend-item">
|
312 |
+
<div class="legend-color" style="background: #e74c3c"></div>
|
313 |
+
<span>Query Point</span>
|
314 |
+
</div>
|
315 |
+
<div class="legend-item">
|
316 |
+
<div class="legend-color" style="background: #2ecc71"></div>
|
317 |
+
<span>Nearest Neighbor</span>
|
318 |
+
</div>
|
319 |
+
</div>
|
320 |
+
|
321 |
+
<h3>Key Features:</h3>
|
322 |
+
<ul class="features">
|
323 |
+
<li>100% accuracy - finds the true nearest neighbors</li>
|
324 |
+
<li>
|
325 |
+
Computationally expensive for large datasets (O(n) complexity)
|
326 |
+
</li>
|
327 |
+
<li>
|
328 |
+
Becomes inefficient in high dimensions (curse of dimensionality)
|
329 |
+
</li>
|
330 |
+
<li>
|
331 |
+
Simple implementation - just calculate all distances and sort
|
332 |
+
</li>
|
333 |
+
</ul>
|
334 |
+
</div>
|
335 |
+
</div>
|
336 |
+
|
337 |
+
<!-- ANN Search -->
|
338 |
+
<div class="search-type ann">
|
339 |
+
<div class="search-header">
|
340 |
+
2. Approximate Nearest Neighbor Search (ANN)
|
341 |
+
</div>
|
342 |
+
<div class="search-content">
|
343 |
+
<p>
|
344 |
+
Sacrifices perfect accuracy for <strong>speed</strong> by using
|
345 |
+
efficient data structures to approximate nearest neighbors.
|
346 |
+
</p>
|
347 |
+
|
348 |
+
<div class="canvas-container">
|
349 |
+
<canvas id="annCanvas" width="460" height="300"></canvas>
|
350 |
+
<div id="annTooltip" class="tooltip"></div>
|
351 |
+
</div>
|
352 |
+
|
353 |
+
<div class="controls">
|
354 |
+
<div>
|
355 |
+
<label for="annAlgorithm">Algorithm:</label>
|
356 |
+
<select id="annAlgorithm">
|
357 |
+
<option value="hnsw">Hierarchical NSW</option>
|
358 |
+
<option value="pq">Product Quantization</option>
|
359 |
+
<option value="lsh">Locality-Sensitive Hashing</option>
|
360 |
+
</select>
|
361 |
+
</div>
|
362 |
+
|
363 |
+
<div>
|
364 |
+
<label for="annStep">Step:</label>
|
365 |
+
<select id="annStep">
|
366 |
+
<option value="0">0. Indexed structure</option>
|
367 |
+
<option value="1">1. Navigate to region</option>
|
368 |
+
<option value="2">2. Local search</option>
|
369 |
+
<option value="3">3. Return approximate NN</option>
|
370 |
+
</select>
|
371 |
+
</div>
|
372 |
+
</div>
|
373 |
+
|
374 |
+
<div class="step-display">
|
375 |
+
<div class="step-title" id="annStepTitle">
|
376 |
+
Step 0: Indexed structure
|
377 |
+
</div>
|
378 |
+
<div class="step-description" id="annStepDesc">
|
379 |
+
Data is pre-organized into efficient lookup structures that
|
380 |
+
cluster or partition the vector space for faster searching.
|
381 |
+
</div>
|
382 |
+
</div>
|
383 |
+
|
384 |
+
<div class="legend">
|
385 |
+
<div class="legend-item">
|
386 |
+
<div class="legend-color" style="background: #3498db"></div>
|
387 |
+
<span>Dataset Points</span>
|
388 |
+
</div>
|
389 |
+
<div class="legend-item">
|
390 |
+
<div class="legend-color" style="background: #e74c3c"></div>
|
391 |
+
<span>Query Point</span>
|
392 |
+
</div>
|
393 |
+
<div class="legend-item">
|
394 |
+
<div class="legend-color" style="background: #f39c12"></div>
|
395 |
+
<span>Search Region</span>
|
396 |
+
</div>
|
397 |
+
<div class="legend-item">
|
398 |
+
<div class="legend-color" style="background: #2ecc71"></div>
|
399 |
+
<span>Returned Neighbors</span>
|
400 |
+
</div>
|
401 |
+
</div>
|
402 |
+
|
403 |
+
<h3>Key Features:</h3>
|
404 |
+
<ul class="features">
|
405 |
+
<li>
|
406 |
+
Much faster than ENN for large datasets (sub-linear time
|
407 |
+
complexity)
|
408 |
+
</li>
|
409 |
+
<li>Trades accuracy for speed (95-99% accurate typically)</li>
|
410 |
+
<li>Requires pre-processing to build index structures</li>
|
411 |
+
<li>Various algorithms optimized for different use cases</li>
|
412 |
+
</ul>
|
413 |
+
</div>
|
414 |
+
</div>
|
415 |
+
|
416 |
+
<!-- Semantic Search -->
|
417 |
+
<div class="search-type semantic">
|
418 |
+
<div class="search-header">3. Semantic Search</div>
|
419 |
+
<div class="search-content">
|
420 |
+
<p>
|
421 |
+
Uses <strong>meaning</strong> of content rather than keywords by
|
422 |
+
searching through dense embedding vectors that capture semantic
|
423 |
+
relationships.
|
424 |
+
</p>
|
425 |
+
|
426 |
+
<div class="canvas-container">
|
427 |
+
<canvas id="semanticCanvas" width="460" height="300"></canvas>
|
428 |
+
<div id="semanticTooltip" class="tooltip"></div>
|
429 |
+
</div>
|
430 |
+
|
431 |
+
<div class="controls">
|
432 |
+
<div>
|
433 |
+
<label for="semanticModel">Embedding Model:</label>
|
434 |
+
<select id="semanticModel">
|
435 |
+
<option value="bert">BERT</option>
|
436 |
+
<option value="use">Universal Sentence Encoder</option>
|
437 |
+
<option value="custom">Domain-Specific</option>
|
438 |
+
</select>
|
439 |
+
</div>
|
440 |
+
|
441 |
+
<div>
|
442 |
+
<label for="semanticStep">Step:</label>
|
443 |
+
<select id="semanticStep">
|
444 |
+
<option value="0">0. Text documents</option>
|
445 |
+
<option value="1">1. Generate embeddings</option>
|
446 |
+
<option value="2">2. Vector similarity search</option>
|
447 |
+
<option value="3">3. Return relevant results</option>
|
448 |
+
</select>
|
449 |
+
</div>
|
450 |
+
</div>
|
451 |
+
|
452 |
+
<div class="step-display">
|
453 |
+
<div class="step-title" id="semanticStepTitle">
|
454 |
+
Step 0: Text documents
|
455 |
+
</div>
|
456 |
+
<div class="step-description" id="semanticStepDesc">
|
457 |
+
Starting with raw text documents or queries before encoding into
|
458 |
+
vector space.
|
459 |
+
</div>
|
460 |
+
</div>
|
461 |
+
|
462 |
+
<div class="legend">
|
463 |
+
<div class="legend-item">
|
464 |
+
<div class="legend-color" style="background: #3498db"></div>
|
465 |
+
<span>Document Embeddings</span>
|
466 |
+
</div>
|
467 |
+
<div class="legend-item">
|
468 |
+
<div class="legend-color" style="background: #e74c3c"></div>
|
469 |
+
<span>Query Embedding</span>
|
470 |
+
</div>
|
471 |
+
<div class="legend-item">
|
472 |
+
<div class="legend-color" style="background: #2ecc71"></div>
|
473 |
+
<span>Semantic Matches</span>
|
474 |
+
</div>
|
475 |
+
</div>
|
476 |
+
|
477 |
+
<h3>Key Features:</h3>
|
478 |
+
<ul class="features">
|
479 |
+
<li>Understands meaning beyond exact keyword matches</li>
|
480 |
+
<li>
|
481 |
+
Uses dense vector embeddings (typically 768-1536 dimensions)
|
482 |
+
</li>
|
483 |
+
<li>Trained on large text corpora to capture language patterns</li>
|
484 |
+
<li>
|
485 |
+
Effective for natural language, images, and multimodal content
|
486 |
+
</li>
|
487 |
+
<li>Usually implemented with ANN algorithms for efficiency</li>
|
488 |
+
</ul>
|
489 |
+
</div>
|
490 |
+
</div>
|
491 |
+
|
492 |
+
<!-- Sparse Vector Search -->
|
493 |
+
<div class="search-type sparse">
|
494 |
+
<div class="search-header">4. Sparse Vector Search</div>
|
495 |
+
<div class="search-content">
|
496 |
+
<p>
|
497 |
+
Uses <strong>high-dimensional sparse vectors</strong> where most
|
498 |
+
elements are zero, optimized for keyword and token matching.
|
499 |
+
</p>
|
500 |
+
|
501 |
+
<div class="canvas-container">
|
502 |
+
<canvas id="sparseCanvas" width="460" height="300"></canvas>
|
503 |
+
<div id="sparseTooltip" class="tooltip"></div>
|
504 |
+
</div>
|
505 |
+
|
506 |
+
<div class="controls">
|
507 |
+
<div>
|
508 |
+
<label for="sparseModel">Representation:</label>
|
509 |
+
<select id="sparseModel">
|
510 |
+
<option value="tfidf">TF-IDF</option>
|
511 |
+
<option value="bm25">BM25</option>
|
512 |
+
<option value="hybrid">Hybrid (Sparse+Dense)</option>
|
513 |
+
</select>
|
514 |
+
</div>
|
515 |
+
|
516 |
+
<div>
|
517 |
+
<label for="sparseStep">Step:</label>
|
518 |
+
<select id="sparseStep">
|
519 |
+
<option value="0">0. Tokenized content</option>
|
520 |
+
<option value="1">1. Create sparse vectors</option>
|
521 |
+
<option value="2">2. Inverted index search</option>
|
522 |
+
<option value="3">3. Return matches</option>
|
523 |
+
</select>
|
524 |
+
</div>
|
525 |
+
</div>
|
526 |
+
|
527 |
+
<div class="step-display">
|
528 |
+
<div class="step-title" id="sparseStepTitle">
|
529 |
+
Step 0: Tokenized content
|
530 |
+
</div>
|
531 |
+
<div class="step-description" id="sparseStepDesc">
|
532 |
+
Documents broken down into tokens (words/terms) before converting
|
533 |
+
to sparse vector representation.
|
534 |
+
</div>
|
535 |
+
</div>
|
536 |
+
|
537 |
+
<div class="legend">
|
538 |
+
<div class="legend-item">
|
539 |
+
<div class="legend-color" style="background: #3498db"></div>
|
540 |
+
<span>Vocabulary Dimensions</span>
|
541 |
+
</div>
|
542 |
+
<div class="legend-item">
|
543 |
+
<div class="legend-color" style="background: #e74c3c"></div>
|
544 |
+
<span>Query Terms</span>
|
545 |
+
</div>
|
546 |
+
<div class="legend-item">
|
547 |
+
<div class="legend-color" style="background: #2ecc71"></div>
|
548 |
+
<span>Matching Terms</span>
|
549 |
+
</div>
|
550 |
+
</div>
|
551 |
+
|
552 |
+
<h3>Key Features:</h3>
|
553 |
+
<ul class="features">
|
554 |
+
<li>Efficient for exact matching and keyword search</li>
|
555 |
+
<li>Very high dimensionality (vocabulary size) but mostly zeros</li>
|
556 |
+
<li>Uses specialized inverted index for quick lookup</li>
|
557 |
+
<li>Good for precision when exact matches are required</li>
|
558 |
+
<li>Often combined with semantic search for hybrid approaches</li>
|
559 |
+
</ul>
|
560 |
+
</div>
|
561 |
+
</div>
|
562 |
+
</div>
|
563 |
+
|
564 |
+
<div class="comparison-table">
|
565 |
+
<h2>Comparison of Vector Search Methods</h2>
|
566 |
+
<table>
|
567 |
+
<thead>
|
568 |
+
<tr>
|
569 |
+
<th>Feature</th>
|
570 |
+
<th>Exact NN (ENN)</th>
|
571 |
+
<th>Approximate NN (ANN)</th>
|
572 |
+
<th>Semantic Search</th>
|
573 |
+
<th>Sparse Vector Search</th>
|
574 |
+
</tr>
|
575 |
+
</thead>
|
576 |
+
<tbody>
|
577 |
+
<tr>
|
578 |
+
<td>Accuracy</td>
|
579 |
+
<td>100% exact</td>
|
580 |
+
<td>High (95-99%)</td>
|
581 |
+
<td>Context dependent</td>
|
582 |
+
<td>High for exact matches</td>
|
583 |
+
</tr>
|
584 |
+
<tr>
|
585 |
+
<td>Speed</td>
|
586 |
+
<td>Slow (O(n))</td>
|
587 |
+
<td>Fast (sub-linear)</td>
|
588 |
+
<td>Moderate to fast</td>
|
589 |
+
<td>Very fast for keywords</td>
|
590 |
+
</tr>
|
591 |
+
<tr>
|
592 |
+
<td>Scalability</td>
|
593 |
+
<td>Poor</td>
|
594 |
+
<td>Good</td>
|
595 |
+
<td>Good with ANN</td>
|
596 |
+
<td>Excellent</td>
|
597 |
+
</tr>
|
598 |
+
<tr>
|
599 |
+
<td>Vector Type</td>
|
600 |
+
<td>Dense or Sparse</td>
|
601 |
+
<td>Usually Dense</td>
|
602 |
+
<td>Dense</td>
|
603 |
+
<td>Sparse</td>
|
604 |
+
</tr>
|
605 |
+
<tr>
|
606 |
+
<td>Use Cases</td>
|
607 |
+
<td>Small datasets, high precision required</td>
|
608 |
+
<td>Large-scale vector search, recommenders</td>
|
609 |
+
<td>NLP, content discovery, similar item search</td>
|
610 |
+
<td>Search engines, document retrieval</td>
|
611 |
+
</tr>
|
612 |
+
<tr>
|
613 |
+
<td>Common Metrics</td>
|
614 |
+
<td>Euclidean, Manhattan, Cosine</td>
|
615 |
+
<td>Euclidean, Inner Product, Cosine</td>
|
616 |
+
<td>Cosine, Dot Product</td>
|
617 |
+
<td>Jaccard, BM25, TF-IDF</td>
|
618 |
+
</tr>
|
619 |
+
<tr>
|
620 |
+
<td>Dimensions</td>
|
621 |
+
<td>Any</td>
|
622 |
+
<td>Moderate to high</td>
|
623 |
+
<td>High (768-1536 typical)</td>
|
624 |
+
<td>Very high (vocabulary size)</td>
|
625 |
+
</tr>
|
626 |
+
<tr>
|
627 |
+
<td>Example Tools</td>
|
628 |
+
<td>SciPy, NumPy</td>
|
629 |
+
<td>FAISS, Annoy, HNSW</td>
|
630 |
+
<td>Pinecone, Weaviate, Milvus</td>
|
631 |
+
<td>Elasticsearch, Lucene</td>
|
632 |
+
</tr>
|
633 |
+
</tbody>
|
634 |
+
</table>
|
635 |
+
</div>
|
636 |
+
|
637 |
+
<script>
|
638 |
+
// Common data and utility functions
|
639 |
+
const dataPoints = [
|
640 |
+
{ id: 1, x: 80, y: 70, label: "P1" },
|
641 |
+
{ id: 2, x: 160, y: 120, label: "P2" },
|
642 |
+
{ id: 3, x: 240, y: 60, label: "P3" },
|
643 |
+
{ id: 4, x: 300, y: 180, label: "P4" },
|
644 |
+
{ id: 5, x: 400, y: 90, label: "P5" },
|
645 |
+
{ id: 6, x: 180, y: 220, label: "P6" },
|
646 |
+
{ id: 7, x: 320, y: 260, label: "P7" },
|
647 |
+
{ id: 8, x: 370, y: 150, label: "P8" },
|
648 |
+
{ id: 9, x: 130, y: 180, label: "P9" },
|
649 |
+
];
|
650 |
+
|
651 |
+
const queryPoint = { x: 220, y: 140, label: "Q" };
|
652 |
+
|
653 |
+
// Semantic search "documents"
|
654 |
+
const semanticDocs = [
|
655 |
+
{ id: 1, text: "How to train a dog", embedding: [0.2, 0.7] },
|
656 |
+
{ id: 2, text: "Dog training techniques", embedding: [0.25, 0.65] },
|
657 |
+
{ id: 3, text: "Cat behavior explained", embedding: [0.7, 0.3] },
|
658 |
+
{ id: 4, text: "Pet care for beginners", embedding: [0.4, 0.5] },
|
659 |
+
{ id: 5, text: "Feline health issues", embedding: [0.8, 0.2] },
|
660 |
+
{ id: 6, text: "Training puppies at home", embedding: [0.15, 0.75] },
|
661 |
+
{ id: 7, text: "Bird watching guide", embedding: [0.9, 0.7] },
|
662 |
+
{ id: 8, text: "Exotic pet ownership", embedding: [0.6, 0.8] },
|
663 |
+
{ id: 9, text: "Dog breeds comparison", embedding: [0.3, 0.6] },
|
664 |
+
];
|
665 |
+
|
666 |
+
const semanticQuery = {
|
667 |
+
text: "How to train my puppy",
|
668 |
+
embedding: [0.2, 0.8],
|
669 |
+
};
|
670 |
+
|
671 |
+
// Sparse vector "documents"
|
672 |
+
const vocabulary = [
|
673 |
+
"dog",
|
674 |
+
"cat",
|
675 |
+
"train",
|
676 |
+
"pet",
|
677 |
+
"health",
|
678 |
+
"food",
|
679 |
+
"guide",
|
680 |
+
"home",
|
681 |
+
"behavior",
|
682 |
+
"puppy",
|
683 |
+
];
|
684 |
+
|
685 |
+
const sparseVectors = [
|
686 |
+
{
|
687 |
+
id: 1,
|
688 |
+
text: "Dog training guide",
|
689 |
+
vector: [0.8, 0, 0.7, 0.1, 0, 0, 0.3, 0, 0, 0],
|
690 |
+
},
|
691 |
+
{
|
692 |
+
id: 2,
|
693 |
+
text: "Cat health and food",
|
694 |
+
vector: [0, 0.9, 0, 0.2, 0.7, 0.6, 0, 0, 0, 0],
|
695 |
+
},
|
696 |
+
{
|
697 |
+
id: 3,
|
698 |
+
text: "Puppy behavior at home",
|
699 |
+
vector: [0.3, 0, 0, 0, 0, 0, 0, 0.7, 0.8, 0.9],
|
700 |
+
},
|
701 |
+
{
|
702 |
+
id: 4,
|
703 |
+
text: "Pet food guide",
|
704 |
+
vector: [0, 0, 0, 0.7, 0, 0.8, 0.6, 0, 0, 0],
|
705 |
+
},
|
706 |
+
{
|
707 |
+
id: 5,
|
708 |
+
text: "Cat and dog behavior",
|
709 |
+
vector: [0.5, 0.5, 0, 0, 0, 0, 0, 0, 0.9, 0],
|
710 |
+
},
|
711 |
+
{
|
712 |
+
id: 6,
|
713 |
+
text: "Training your puppy",
|
714 |
+
vector: [0, 0, 0.8, 0, 0, 0, 0, 0, 0, 0.8],
|
715 |
+
},
|
716 |
+
];
|
717 |
+
|
718 |
+
const sparseQuery = {
|
719 |
+
text: "dog training puppies",
|
720 |
+
vector: [0.6, 0, 0.7, 0, 0, 0, 0, 0, 0, 0.5],
|
721 |
+
};
|
722 |
+
|
723 |
+
// Distance functions
|
724 |
+
function euclideanDistance(p1, p2) {
|
725 |
+
return Math.sqrt(Math.pow(p1.x - p2.x, 2) + Math.pow(p1.y - p2.y, 2));
|
726 |
+
}
|
727 |
+
|
728 |
+
function manhattanDistance(p1, p2) {
|
729 |
+
return Math.abs(p1.x - p2.x) + Math.abs(p1.y - p2.y);
|
730 |
+
}
|
731 |
+
|
732 |
+
function cosineDistance(p1, p2) {
|
733 |
+
// Convert to vectors from origin
|
734 |
+
const dotProduct = p1.x * p2.x + p1.y * p2.y;
|
735 |
+
const mag1 = Math.sqrt(p1.x * p1.x + p1.y * p1.y);
|
736 |
+
const mag2 = Math.sqrt(p2.x * p2.x + p2.y * p2.y);
|
737 |
+
return 1 - dotProduct / (mag1 * mag2);
|
738 |
+
}
|
739 |
+
|
740 |
+
function cosineSimilarity(v1, v2) {
|
741 |
+
let dotProduct = 0;
|
742 |
+
let mag1 = 0;
|
743 |
+
let mag2 = 0;
|
744 |
+
|
745 |
+
for (let i = 0; i < v1.length; i++) {
|
746 |
+
dotProduct += v1[i] * v2[i];
|
747 |
+
mag1 += v1[i] * v1[i];
|
748 |
+
mag2 += v2[i] * v2[i];
|
749 |
+
}
|
750 |
+
|
751 |
+
mag1 = Math.sqrt(mag1);
|
752 |
+
mag2 = Math.sqrt(mag2);
|
753 |
+
|
754 |
+
return dotProduct / (mag1 * mag2);
|
755 |
+
}
|
756 |
+
|
757 |
+
// ENN Canvas Setup
|
758 |
+
const ennCanvas = document.getElementById("ennCanvas");
|
759 |
+
const ennCtx = ennCanvas.getContext("2d");
|
760 |
+
const ennDistanceSelect = document.getElementById("ennDistance");
|
761 |
+
const ennStepSelect = document.getElementById("ennStep");
|
762 |
+
const ennStepTitle = document.getElementById("ennStepTitle");
|
763 |
+
const ennStepDesc = document.getElementById("ennStepDesc");
|
764 |
+
const ennTooltip = document.getElementById("ennTooltip");
|
765 |
+
|
766 |
+
// ANN Canvas Setup
|
767 |
+
const annCanvas = document.getElementById("annCanvas");
|
768 |
+
const annCtx = annCanvas.getContext("2d");
|
769 |
+
const annAlgorithmSelect = document.getElementById("annAlgorithm");
|
770 |
+
const annStepSelect = document.getElementById("annStep");
|
771 |
+
const annStepTitle = document.getElementById("annStepTitle");
|
772 |
+
const annStepDesc = document.getElementById("annStepDesc");
|
773 |
+
const annTooltip = document.getElementById("annTooltip");
|
774 |
+
|
775 |
+
// Semantic Canvas Setup
|
776 |
+
const semanticCanvas = document.getElementById("semanticCanvas");
|
777 |
+
const semanticCtx = semanticCanvas.getContext("2d");
|
778 |
+
const semanticModelSelect = document.getElementById("semanticModel");
|
779 |
+
const semanticStepSelect = document.getElementById("semanticStep");
|
780 |
+
const semanticStepTitle = document.getElementById("semanticStepTitle");
|
781 |
+
const semanticStepDesc = document.getElementById("semanticStepDesc");
|
782 |
+
const semanticTooltip = document.getElementById("semanticTooltip");
|
783 |
+
|
784 |
+
// Sparse Canvas Setup
|
785 |
+
const sparseCanvas = document.getElementById("sparseCanvas");
|
786 |
+
const sparseCtx = sparseCanvas.getContext("2d");
|
787 |
+
const sparseModelSelect = document.getElementById("sparseModel");
|
788 |
+
const sparseStepSelect = document.getElementById("sparseStep");
|
789 |
+
const sparseStepTitle = document.getElementById("sparseStepTitle");
|
790 |
+
const sparseStepDesc = document.getElementById("sparseStepDesc");
|
791 |
+
const sparseTooltip = document.getElementById("sparseTooltip");
|
792 |
+
|
793 |
+
// Event listeners for ENN
|
794 |
+
ennDistanceSelect.addEventListener("change", renderENNSearch);
|
795 |
+
ennStepSelect.addEventListener("change", renderENNSearch);
|
796 |
+
|
797 |
+
// Event listeners for ANN
|
798 |
+
annAlgorithmSelect.addEventListener("change", renderANNSearch);
|
799 |
+
annStepSelect.addEventListener("change", renderANNSearch);
|
800 |
+
|
801 |
+
// Event listeners for Semantic Search
|
802 |
+
semanticModelSelect.addEventListener("change", renderSemanticSearch);
|
803 |
+
semanticStepSelect.addEventListener("change", renderSemanticSearch);
|
804 |
+
|
805 |
+
// Event listeners for Sparse Vector Search
|
806 |
+
sparseModelSelect.addEventListener("change", renderSparseSearch);
|
807 |
+
sparseStepSelect.addEventListener("change", renderSparseSearch);
|
808 |
+
|
809 |
+
// Draw all visualizations initially
|
810 |
+
renderENNSearch();
|
811 |
+
renderANNSearch();
|
812 |
+
renderSemanticSearch();
|
813 |
+
renderSparseSearch();
|
814 |
+
|
815 |
+
// ENN Search visualization
|
816 |
+
function renderENNSearch() {
|
817 |
+
const distanceMetric = ennDistanceSelect.value;
|
818 |
+
const step = parseInt(ennStepSelect.value);
|
819 |
+
|
820 |
+
// Clear canvas
|
821 |
+
ennCtx.clearRect(0, 0, ennCanvas.width, ennCanvas.height);
|
822 |
+
|
823 |
+
// Draw grid
|
824 |
+
drawGrid(ennCtx);
|
825 |
+
|
826 |
+
// Calculate distances based on selected metric
|
827 |
+
let distances = dataPoints.map((point) => {
|
828 |
+
let dist;
|
829 |
+
if (distanceMetric === "euclidean") {
|
830 |
+
dist = euclideanDistance(point, queryPoint);
|
831 |
+
} else if (distanceMetric === "manhattan") {
|
832 |
+
dist = manhattanDistance(point, queryPoint);
|
833 |
+
} else if (distanceMetric === "cosine") {
|
834 |
+
dist = cosineDistance(point, queryPoint);
|
835 |
+
}
|
836 |
+
return { ...point, distance: dist };
|
837 |
+
});
|
838 |
+
|
839 |
+
// Sort by distance
|
840 |
+
let sortedPoints = [...distances].sort(
|
841 |
+
(a, b) => a.distance - b.distance
|
842 |
+
);
|
843 |
+
|
844 |
+
// Draw data points
|
845 |
+
dataPoints.forEach((point) => {
|
846 |
+
drawPoint(ennCtx, point.x, point.y, "#3498db", point.label);
|
847 |
+
});
|
848 |
+
|
849 |
+
// Draw query point
|
850 |
+
drawPoint(
|
851 |
+
ennCtx,
|
852 |
+
queryPoint.x,
|
853 |
+
queryPoint.y,
|
854 |
+
"#e74c3c",
|
855 |
+
queryPoint.label,
|
856 |
+
12
|
857 |
+
);
|
858 |
+
|
859 |
+
// Step-specific rendering
|
860 |
+
if (step >= 1) {
|
861 |
+
// Draw distance lines to all points
|
862 |
+
distances.forEach((point) => {
|
863 |
+
drawLine(
|
864 |
+
ennCtx,
|
865 |
+
queryPoint.x,
|
866 |
+
queryPoint.y,
|
867 |
+
point.x,
|
868 |
+
point.y,
|
869 |
+
"#aaa",
|
870 |
+
[3, 3]
|
871 |
+
);
|
872 |
+
|
873 |
+
// Draw distance value
|
874 |
+
const midX = (queryPoint.x + point.x) / 2;
|
875 |
+
const midY = (queryPoint.y + point.y) / 2;
|
876 |
+
ennCtx.fillStyle = "#555";
|
877 |
+
ennCtx.font = "11px Arial";
|
878 |
+
ennCtx.textAlign = "center";
|
879 |
+
ennCtx.fillText(point.distance.toFixed(1), midX, midY);
|
880 |
+
});
|
881 |
+
}
|
882 |
+
|
883 |
+
if (step >= 2) {
|
884 |
+
// Visualize sorting by distance
|
885 |
+
let yPos = 20;
|
886 |
+
ennCtx.fillStyle = "#333";
|
887 |
+
ennCtx.font = "12px Arial";
|
888 |
+
ennCtx.textAlign = "left";
|
889 |
+
ennCtx.fillText("Sorted by distance:", 10, yPos);
|
890 |
+
|
891 |
+
for (let i = 0; i < Math.min(5, sortedPoints.length); i++) {
|
892 |
+
yPos += 15;
|
893 |
+
ennCtx.fillText(
|
894 |
+
`${i + 1}. ${sortedPoints[i].label} (${sortedPoints[
|
895 |
+
i
|
896 |
+
].distance.toFixed(1)})`,
|
897 |
+
15,
|
898 |
+
yPos
|
899 |
+
);
|
900 |
+
}
|
901 |
+
}
|
902 |
+
|
903 |
+
if (step >= 3) {
|
904 |
+
// Highlight nearest neighbor(s)
|
905 |
+
const nearest = sortedPoints[0];
|
906 |
+
drawPoint(
|
907 |
+
ennCtx,
|
908 |
+
nearest.x,
|
909 |
+
nearest.y,
|
910 |
+
"#3498db",
|
911 |
+
nearest.label,
|
912 |
+
10,
|
913 |
+
"#2ecc71",
|
914 |
+
3
|
915 |
+
);
|
916 |
+
drawLine(
|
917 |
+
ennCtx,
|
918 |
+
queryPoint.x,
|
919 |
+
queryPoint.y,
|
920 |
+
nearest.x,
|
921 |
+
nearest.y,
|
922 |
+
"#2ecc71",
|
923 |
+
[],
|
924 |
+
2
|
925 |
+
);
|
926 |
+
|
927 |
+
// Draw threshold for the nearest distance
|
928 |
+
if (distanceMetric === "euclidean") {
|
929 |
+
ennCtx.beginPath();
|
930 |
+
ennCtx.arc(
|
931 |
+
queryPoint.x,
|
932 |
+
queryPoint.y,
|
933 |
+
nearest.distance,
|
934 |
+
0,
|
935 |
+
Math.PI * 2
|
936 |
+
);
|
937 |
+
ennCtx.strokeStyle = "rgba(231, 76, 60, 0.4)";
|
938 |
+
ennCtx.stroke();
|
939 |
+
ennCtx.fillStyle = "rgba(231, 76, 60, 0.05)";
|
940 |
+
ennCtx.fill();
|
941 |
+
} else if (distanceMetric === "manhattan") {
|
942 |
+
// Draw diamond shape
|
943 |
+
ennCtx.beginPath();
|
944 |
+
ennCtx.moveTo(queryPoint.x, queryPoint.y - nearest.distance);
|
945 |
+
ennCtx.lineTo(queryPoint.x + nearest.distance, queryPoint.y);
|
946 |
+
ennCtx.lineTo(queryPoint.x, queryPoint.y + nearest.distance);
|
947 |
+
ennCtx.lineTo(queryPoint.x - nearest.distance, queryPoint.y);
|
948 |
+
ennCtx.closePath();
|
949 |
+
ennCtx.strokeStyle = "rgba(231, 76, 60, 0.4)";
|
950 |
+
ennCtx.stroke();
|
951 |
+
ennCtx.fillStyle = "rgba(231, 76, 60, 0.05)";
|
952 |
+
ennCtx.fill();
|
953 |
+
} else if (distanceMetric === "cosine") {
|
954 |
+
// Complicated to visualize in 2D space, show a text note
|
955 |
+
ennCtx.fillStyle = "rgba(231, 76, 60, 0.7)";
|
956 |
+
ennCtx.fillText(
|
957 |
+
"Cosine similarity measures angle between vectors",
|
958 |
+
250,
|
959 |
+
30
|
960 |
+
);
|
961 |
+
ennCtx.fillText("smaller angle = more similar", 250, 45);
|
962 |
+
}
|
963 |
+
}
|
964 |
+
|
965 |
+
// Update step description
|
966 |
+
updateENNStepInfo(step, distanceMetric);
|
967 |
+
}
|
968 |
+
|
969 |
+
// ANN Search visualization
|
970 |
+
function renderANNSearch() {
|
971 |
+
const algorithm = annAlgorithmSelect.value;
|
972 |
+
const step = parseInt(annStepSelect.value);
|
973 |
+
|
974 |
+
// Clear canvas
|
975 |
+
annCtx.clearRect(0, 0, annCanvas.width, annCanvas.height);
|
976 |
+
|
977 |
+
// Draw grid
|
978 |
+
drawGrid(annCtx);
|
979 |
+
|
980 |
+
// Draw data points
|
981 |
+
dataPoints.forEach((point) => {
|
982 |
+
drawPoint(annCtx, point.x, point.y, "#3498db", point.label);
|
983 |
+
});
|
984 |
+
|
985 |
+
// Draw query point
|
986 |
+
drawPoint(
|
987 |
+
annCtx,
|
988 |
+
queryPoint.x,
|
989 |
+
queryPoint.y,
|
990 |
+
"#e74c3c",
|
991 |
+
queryPoint.label,
|
992 |
+
12
|
993 |
+
);
|
994 |
+
|
995 |
+
// Step-specific rendering based on algorithm
|
996 |
+
if (algorithm === "hnsw") {
|
997 |
+
renderHNSW(annCtx, step);
|
998 |
+
} else if (algorithm === "pq") {
|
999 |
+
renderProductQuantization(annCtx, step);
|
1000 |
+
} else if (algorithm === "lsh") {
|
1001 |
+
renderLSH(annCtx, step);
|
1002 |
+
}
|
1003 |
+
|
1004 |
+
// Update step description
|
1005 |
+
updateANNStepInfo(step, algorithm);
|
1006 |
+
}
|
1007 |
+
|
1008 |
+
// Semantic Search visualization
|
1009 |
+
function renderSemanticSearch() {
|
1010 |
+
const model = semanticModelSelect.value;
|
1011 |
+
const step = parseInt(semanticStepSelect.value);
|
1012 |
+
|
1013 |
+
// Clear canvas
|
1014 |
+
semanticCtx.clearRect(
|
1015 |
+
0,
|
1016 |
+
0,
|
1017 |
+
semanticCanvas.width,
|
1018 |
+
semanticCanvas.height
|
1019 |
+
);
|
1020 |
+
|
1021 |
+
if (step === 0) {
|
1022 |
+
// Show text documents
|
1023 |
+
drawTextDocuments(semanticCtx, semanticDocs, semanticQuery);
|
1024 |
+
} else {
|
1025 |
+
// Draw embedding space
|
1026 |
+
drawGrid(semanticCtx);
|
1027 |
+
|
1028 |
+
// Draw document embeddings (2D projection)
|
1029 |
+
semanticDocs.forEach((doc) => {
|
1030 |
+
// Scale to canvas
|
1031 |
+
const x = doc.embedding[0] * 400 + 30;
|
1032 |
+
const y = (1 - doc.embedding[1]) * 250 + 20;
|
1033 |
+
drawPoint(semanticCtx, x, y, "#3498db", `D${doc.id}`);
|
1034 |
+
});
|
1035 |
+
|
1036 |
+
// Draw query embedding
|
1037 |
+
const qx = semanticQuery.embedding[0] * 400 + 30;
|
1038 |
+
const qy = (1 - semanticQuery.embedding[1]) * 250 + 20;
|
1039 |
+
drawPoint(semanticCtx, qx, qy, "#e74c3c", "Q", 12);
|
1040 |
+
|
1041 |
+
if (step >= 2) {
|
1042 |
+
// Calculate similarities
|
1043 |
+
const similarities = semanticDocs
|
1044 |
+
.map((doc) => ({
|
1045 |
+
...doc,
|
1046 |
+
similarity: cosineSimilarity(
|
1047 |
+
doc.embedding,
|
1048 |
+
semanticQuery.embedding
|
1049 |
+
),
|
1050 |
+
}))
|
1051 |
+
.sort((a, b) => b.similarity - a.similarity);
|
1052 |
+
|
1053 |
+
// Draw lines to most similar docs
|
1054 |
+
for (let i = 0; i < 3; i++) {
|
1055 |
+
const doc = similarities[i];
|
1056 |
+
const dx = doc.embedding[0] * 400 + 30;
|
1057 |
+
const dy = (1 - doc.embedding[1]) * 250 + 20;
|
1058 |
+
|
1059 |
+
const lineWidth = 3 - i;
|
1060 |
+
drawLine(semanticCtx, qx, qy, dx, dy, "#2ecc71", [], lineWidth);
|
1061 |
+
|
1062 |
+
// Highlight the similar document
|
1063 |
+
drawPoint(
|
1064 |
+
semanticCtx,
|
1065 |
+
dx,
|
1066 |
+
dy,
|
1067 |
+
"#3498db",
|
1068 |
+
`D${doc.id}`,
|
1069 |
+
10,
|
1070 |
+
"#2ecc71",
|
1071 |
+
2
|
1072 |
+
);
|
1073 |
+
|
1074 |
+
// Show similarity score
|
1075 |
+
const midX = (qx + dx) / 2;
|
1076 |
+
const midY = (qy + dy) / 2 - 10;
|
1077 |
+
semanticCtx.fillStyle = "#555";
|
1078 |
+
semanticCtx.font = "11px Arial";
|
1079 |
+
semanticCtx.textAlign = "center";
|
1080 |
+
semanticCtx.fillText(doc.similarity.toFixed(2), midX, midY);
|
1081 |
+
}
|
1082 |
+
|
1083 |
+
if (step >= 3) {
|
1084 |
+
// Display top results
|
1085 |
+
let yPos = 20;
|
1086 |
+
semanticCtx.fillStyle = "#333";
|
1087 |
+
semanticCtx.font = "12px Arial";
|
1088 |
+
semanticCtx.textAlign = "left";
|
1089 |
+
semanticCtx.fillText("Top matches:", 10, yPos);
|
1090 |
+
|
1091 |
+
for (let i = 0; i < Math.min(3, similarities.length); i++) {
|
1092 |
+
yPos += 15;
|
1093 |
+
semanticCtx.fillText(
|
1094 |
+
`${similarities[i].text} (${similarities[
|
1095 |
+
i
|
1096 |
+
].similarity.toFixed(2)})`,
|
1097 |
+
15,
|
1098 |
+
yPos
|
1099 |
+
);
|
1100 |
+
}
|
1101 |
+
}
|
1102 |
+
}
|
1103 |
+
}
|
1104 |
+
|
1105 |
+
// Update step description
|
1106 |
+
updateSemanticStepInfo(step, model);
|
1107 |
+
}
|
1108 |
+
|
1109 |
+
// Sparse Vector Search visualization
|
1110 |
+
function renderSparseSearch() {
|
1111 |
+
const model = sparseModelSelect.value;
|
1112 |
+
const step = parseInt(sparseStepSelect.value);
|
1113 |
+
|
1114 |
+
// Clear canvas
|
1115 |
+
sparseCtx.clearRect(0, 0, sparseCanvas.width, sparseCanvas.height);
|
1116 |
+
|
1117 |
+
if (step === 0) {
|
1118 |
+
// Show text documents with highlighted tokens
|
1119 |
+
drawTokenizedDocuments(sparseCtx, sparseVectors, sparseQuery);
|
1120 |
+
} else {
|
1121 |
+
// Draw sparse vectors visualization
|
1122 |
+
drawSparseVectors(sparseCtx, sparseVectors, sparseQuery, step, model);
|
1123 |
+
|
1124 |
+
if (step >= 2) {
|
1125 |
+
// Calculate matching scores
|
1126 |
+
const matches = sparseVectors
|
1127 |
+
.map((doc) => {
|
1128 |
+
let score = 0;
|
1129 |
+
for (let i = 0; i < doc.vector.length; i++) {
|
1130 |
+
score += doc.vector[i] * sparseQuery.vector[i];
|
1131 |
+
}
|
1132 |
+
return { ...doc, score };
|
1133 |
+
})
|
1134 |
+
.sort((a, b) => b.score - a.score);
|
1135 |
+
|
1136 |
+
if (step >= 3) {
|
1137 |
+
// Display top results
|
1138 |
+
let yPos = 20;
|
1139 |
+
sparseCtx.fillStyle = "#333";
|
1140 |
+
sparseCtx.font = "12px Arial";
|
1141 |
+
sparseCtx.textAlign = "left";
|
1142 |
+
sparseCtx.fillText("Top matches:", 300, yPos);
|
1143 |
+
|
1144 |
+
for (let i = 0; i < Math.min(3, matches.length); i++) {
|
1145 |
+
yPos += 15;
|
1146 |
+
sparseCtx.fillText(
|
1147 |
+
`${matches[i].text} (${matches[i].score.toFixed(2)})`,
|
1148 |
+
300,
|
1149 |
+
yPos
|
1150 |
+
);
|
1151 |
+
}
|
1152 |
+
}
|
1153 |
+
}
|
1154 |
+
}
|
1155 |
+
|
1156 |
+
// Update step description
|
1157 |
+
updateSparseStepInfo(step, model);
|
1158 |
+
}
|
1159 |
+
|
1160 |
+
// Algorithm-specific renderers for ANN
|
1161 |
+
function renderHNSW(ctx, step) {
|
1162 |
+
if (step >= 1) {
|
1163 |
+
// Draw HNSW layers
|
1164 |
+
ctx.strokeStyle = "#f39c12";
|
1165 |
+
ctx.lineWidth = 1;
|
1166 |
+
|
1167 |
+
// Top layer (sparse connections)
|
1168 |
+
const topLayer = [dataPoints[2], dataPoints[4], dataPoints[7]];
|
1169 |
+
topLayer.forEach((p1, i) => {
|
1170 |
+
topLayer.forEach((p2, j) => {
|
1171 |
+
if (i !== j) {
|
1172 |
+
drawLine(ctx, p1.x, p1.y, p2.x, p2.y, "#f39c12", [2, 2], 1);
|
1173 |
+
}
|
1174 |
+
});
|
1175 |
+
});
|
1176 |
+
|
1177 |
+
// Middle layer (more connections)
|
1178 |
+
if (step >= 2) {
|
1179 |
+
const midLayer = [
|
1180 |
+
dataPoints[1],
|
1181 |
+
dataPoints[2],
|
1182 |
+
dataPoints[4],
|
1183 |
+
dataPoints[6],
|
1184 |
+
dataPoints[7],
|
1185 |
+
];
|
1186 |
+
midLayer.forEach((p1, i) => {
|
1187 |
+
let connections = 0;
|
1188 |
+
midLayer.forEach((p2, j) => {
|
1189 |
+
if (i !== j && connections < 3) {
|
1190 |
+
drawLine(ctx, p1.x, p1.y, p2.x, p2.y, "#f39c12", [], 1);
|
1191 |
+
connections++;
|
1192 |
+
}
|
1193 |
+
});
|
1194 |
+
});
|
1195 |
+
|
1196 |
+
// Entry point search
|
1197 |
+
const entryPoint = dataPoints[4]; // An arbitrary entry point - Error is solved
|
1198 |
+
drawPoint(
|
1199 |
+
ctx,
|
1200 |
+
entryPoint.x,
|
1201 |
+
entryPoint.y,
|
1202 |
+
"#3498db",
|
1203 |
+
entryPoint.label,
|
1204 |
+
10,
|
1205 |
+
"#f39c12",
|
1206 |
+
2
|
1207 |
+
);
|
1208 |
+
drawLine(
|
1209 |
+
ctx,
|
1210 |
+
queryPoint.x,
|
1211 |
+
queryPoint.y,
|
1212 |
+
entryPoint.x,
|
1213 |
+
entryPoint.y,
|
1214 |
+
"#f39c12",
|
1215 |
+
[],
|
1216 |
+
2
|
1217 |
+
);
|
1218 |
+
}
|
1219 |
+
|
1220 |
+
if (step >= 3) {
|
1221 |
+
// Show local greedy search path
|
1222 |
+
const searchPath = [
|
1223 |
+
dataPoints[4],
|
1224 |
+
dataPoints[7],
|
1225 |
+
dataPoints[6],
|
1226 |
+
dataPoints[2],
|
1227 |
+
];
|
1228 |
+
|
1229 |
+
for (let i = 0; i < searchPath.length - 1; i++) {
|
1230 |
+
const p1 = searchPath[i];
|
1231 |
+
const p2 = searchPath[i + 1];
|
1232 |
+
drawLine(ctx, p1.x, p1.y, p2.x, p2.y, "#e74c3c", [], 2);
|
1233 |
+
|
1234 |
+
if (i < searchPath.length - 2) {
|
1235 |
+
drawPoint(
|
1236 |
+
ctx,
|
1237 |
+
p1.x,
|
1238 |
+
p1.y,
|
1239 |
+
"#3498db",
|
1240 |
+
p1.label,
|
1241 |
+
10,
|
1242 |
+
"#f39c3c",
|
1243 |
+
2
|
1244 |
+
);
|
1245 |
+
}
|
1246 |
+
}
|
1247 |
+
|
1248 |
+
// Final result
|
1249 |
+
const nearest = dataPoints[2];
|
1250 |
+
drawPoint(
|
1251 |
+
ctx,
|
1252 |
+
nearest.x,
|
1253 |
+
nearest.y,
|
1254 |
+
"#3498db",
|
1255 |
+
nearest.label,
|
1256 |
+
10,
|
1257 |
+
"#2ecc71",
|
1258 |
+
3
|
1259 |
+
);
|
1260 |
+
drawLine(
|
1261 |
+
ctx,
|
1262 |
+
queryPoint.x,
|
1263 |
+
queryPoint.y,
|
1264 |
+
nearest.x,
|
1265 |
+
nearest.y,
|
1266 |
+
"#2ecc71",
|
1267 |
+
[],
|
1268 |
+
2
|
1269 |
+
);
|
1270 |
+
}
|
1271 |
+
}
|
1272 |
+
}
|
1273 |
+
|
1274 |
+
function renderProductQuantization(ctx, step) {
|
1275 |
+
if (step >= 1) {
|
1276 |
+
// Draw PQ centroids and quantized regions
|
1277 |
+
|
1278 |
+
// Split canvas into 4 regions (simple quantization visualization)
|
1279 |
+
ctx.strokeStyle = "#f39c12";
|
1280 |
+
ctx.lineWidth = 2;
|
1281 |
+
ctx.setLineDash([]);
|
1282 |
+
|
1283 |
+
// Vertical split
|
1284 |
+
ctx.beginPath();
|
1285 |
+
ctx.moveTo(ennCanvas.width / 2, 0);
|
1286 |
+
ctx.lineTo(ennCanvas.width / 2, ennCanvas.height);
|
1287 |
+
ctx.stroke();
|
1288 |
+
|
1289 |
+
// Horizontal split
|
1290 |
+
ctx.beginPath();
|
1291 |
+
ctx.moveTo(0, ennCanvas.height / 2);
|
1292 |
+
ctx.lineTo(ennCanvas.width, ennCanvas.height / 2);
|
1293 |
+
ctx.stroke();
|
1294 |
+
|
1295 |
+
// Label regions
|
1296 |
+
ctx.fillStyle = "#f39c12";
|
1297 |
+
ctx.font = "12px Arial";
|
1298 |
+
ctx.textAlign = "center";
|
1299 |
+
ctx.fillText("Region 1", ennCanvas.width / 4, ennCanvas.height / 4);
|
1300 |
+
ctx.fillText(
|
1301 |
+
"Region 2",
|
1302 |
+
(3 * ennCanvas.width) / 4,
|
1303 |
+
ennCanvas.height / 4
|
1304 |
+
);
|
1305 |
+
ctx.fillText(
|
1306 |
+
"Region 3",
|
1307 |
+
ennCanvas.width / 4,
|
1308 |
+
(3 * ennCanvas.height) / 4
|
1309 |
+
);
|
1310 |
+
ctx.fillText(
|
1311 |
+
"Region 4",
|
1312 |
+
(3 * ennCanvas.width) / 4,
|
1313 |
+
(3 * ennCanvas.height) / 4
|
1314 |
+
);
|
1315 |
+
|
1316 |
+
if (step >= 2) {
|
1317 |
+
// Identify query region
|
1318 |
+
let queryRegion;
|
1319 |
+
if (queryPoint.x < ennCanvas.width / 2) {
|
1320 |
+
if (queryPoint.y < ennCanvas.height / 2) {
|
1321 |
+
queryRegion = 1;
|
1322 |
+
} else {
|
1323 |
+
queryRegion = 3;
|
1324 |
+
}
|
1325 |
+
} else {
|
1326 |
+
if (queryPoint.y < ennCanvas.height / 2) {
|
1327 |
+
queryRegion = 2;
|
1328 |
+
} else {
|
1329 |
+
queryRegion = 4;
|
1330 |
+
}
|
1331 |
+
}
|
1332 |
+
|
1333 |
+
// Highlight query region
|
1334 |
+
ctx.fillStyle = "rgba(243, 156, 18, 0.1)";
|
1335 |
+
if (queryRegion === 1) {
|
1336 |
+
ctx.fillRect(0, 0, ennCanvas.width / 2, ennCanvas.height / 2);
|
1337 |
+
} else if (queryRegion === 2) {
|
1338 |
+
ctx.fillRect(
|
1339 |
+
ennCanvas.width / 2,
|
1340 |
+
0,
|
1341 |
+
ennCanvas.width / 2,
|
1342 |
+
ennCanvas.height / 2
|
1343 |
+
);
|
1344 |
+
} else if (queryRegion === 3) {
|
1345 |
+
ctx.fillRect(
|
1346 |
+
0,
|
1347 |
+
ennCanvas.height / 2,
|
1348 |
+
ennCanvas.width / 2,
|
1349 |
+
ennCanvas.height / 2
|
1350 |
+
);
|
1351 |
+
} else {
|
1352 |
+
ctx.fillRect(
|
1353 |
+
ennCanvas.width / 2,
|
1354 |
+
ennCanvas.height / 2,
|
1355 |
+
ennCanvas.width / 2,
|
1356 |
+
ennCanvas.height / 2
|
1357 |
+
);
|
1358 |
+
}
|
1359 |
+
|
1360 |
+
// Only search points in that region
|
1361 |
+
const pointsInRegion = dataPoints.filter((p) => {
|
1362 |
+
const region =
|
1363 |
+
p.x < ennCanvas.width / 2
|
1364 |
+
? p.y < ennCanvas.height / 2
|
1365 |
+
? 1
|
1366 |
+
: 3
|
1367 |
+
: p.y < ennCanvas.height / 2
|
1368 |
+
? 2
|
1369 |
+
: 4;
|
1370 |
+
return region === queryRegion;
|
1371 |
+
});
|
1372 |
+
|
1373 |
+
// Draw lines to only those points
|
1374 |
+
pointsInRegion.forEach((point) => {
|
1375 |
+
drawLine(
|
1376 |
+
ctx,
|
1377 |
+
queryPoint.x,
|
1378 |
+
queryPoint.y,
|
1379 |
+
point.x,
|
1380 |
+
point.y,
|
1381 |
+
"#aaa",
|
1382 |
+
[3, 3]
|
1383 |
+
);
|
1384 |
+
});
|
1385 |
+
}
|
1386 |
+
|
1387 |
+
if (step >= 3) {
|
1388 |
+
// Find approximated nearest (would be from the shortlisted region)
|
1389 |
+
const distances = dataPoints.map((point) => ({
|
1390 |
+
...point,
|
1391 |
+
distance: euclideanDistance(point, queryPoint),
|
1392 |
+
}));
|
1393 |
+
|
1394 |
+
// Filter to correct region first
|
1395 |
+
let queryRegion;
|
1396 |
+
if (queryPoint.x < ennCanvas.width / 2) {
|
1397 |
+
if (queryPoint.y < ennCanvas.height / 2) {
|
1398 |
+
queryRegion = 1;
|
1399 |
+
} else {
|
1400 |
+
queryRegion = 3;
|
1401 |
+
}
|
1402 |
+
} else {
|
1403 |
+
if (queryPoint.y < ennCanvas.height / 2) {
|
1404 |
+
queryRegion = 2;
|
1405 |
+
} else {
|
1406 |
+
queryRegion = 4;
|
1407 |
+
}
|
1408 |
+
}
|
1409 |
+
|
1410 |
+
const pointsInRegion = distances.filter((p) => {
|
1411 |
+
const region =
|
1412 |
+
p.x < ennCanvas.width / 2
|
1413 |
+
? p.y < ennCanvas.height / 2
|
1414 |
+
? 1
|
1415 |
+
: 3
|
1416 |
+
: p.y < ennCanvas.height / 2
|
1417 |
+
? 2
|
1418 |
+
: 4;
|
1419 |
+
return region === queryRegion;
|
1420 |
+
});
|
1421 |
+
|
1422 |
+
// Sort to find nearest in region
|
1423 |
+
const nearest = pointsInRegion.sort(
|
1424 |
+
(a, b) => a.distance - b.distance
|
1425 |
+
)[0];
|
1426 |
+
|
1427 |
+
// Highlight approximate nearest neighbor
|
1428 |
+
drawPoint(
|
1429 |
+
ctx,
|
1430 |
+
nearest.x,
|
1431 |
+
nearest.y,
|
1432 |
+
"#3498db",
|
1433 |
+
nearest.label,
|
1434 |
+
10,
|
1435 |
+
"#2ecc71",
|
1436 |
+
3
|
1437 |
+
);
|
1438 |
+
drawLine(
|
1439 |
+
ctx,
|
1440 |
+
queryPoint.x,
|
1441 |
+
queryPoint.y,
|
1442 |
+
nearest.x,
|
1443 |
+
nearest.y,
|
1444 |
+
"#2ecc71",
|
1445 |
+
[],
|
1446 |
+
2
|
1447 |
+
);
|
1448 |
+
|
1449 |
+
// Check if it's actually the true nearest neighbor
|
1450 |
+
const trueNearest = distances.sort(
|
1451 |
+
(a, b) => a.distance - b.distance
|
1452 |
+
)[0];
|
1453 |
+
if (nearest.id !== trueNearest.id) {
|
1454 |
+
// Show actual nearest as reference
|
1455 |
+
drawPoint(
|
1456 |
+
ctx,
|
1457 |
+
trueNearest.x,
|
1458 |
+
trueNearest.y,
|
1459 |
+
"#3498db",
|
1460 |
+
trueNearest.label,
|
1461 |
+
10,
|
1462 |
+
"#e74c3c",
|
1463 |
+
2
|
1464 |
+
);
|
1465 |
+
drawLine(
|
1466 |
+
ctx,
|
1467 |
+
queryPoint.x,
|
1468 |
+
queryPoint.y,
|
1469 |
+
trueNearest.x,
|
1470 |
+
trueNearest.y,
|
1471 |
+
"#e74c3c",
|
1472 |
+
[5, 5],
|
1473 |
+
1
|
1474 |
+
);
|
1475 |
+
|
1476 |
+
ctx.fillStyle = "#e74c3c";
|
1477 |
+
ctx.font = "12px Arial";
|
1478 |
+
ctx.textAlign = "left";
|
1479 |
+
ctx.fillText("Approximation error", 10, 20);
|
1480 |
+
ctx.fillText(`True nearest: ${trueNearest.label}`, 10, 35);
|
1481 |
+
} else {
|
1482 |
+
ctx.fillStyle = "#2ecc71";
|
1483 |
+
ctx.font = "12px Arial";
|
1484 |
+
ctx.textAlign = "left";
|
1485 |
+
ctx.fillText("Correct match", 10, 20);
|
1486 |
+
}
|
1487 |
+
}
|
1488 |
+
}
|
1489 |
+
}
|
1490 |
+
|
1491 |
+
// Helper functions for visualizations
|
1492 |
+
function drawGrid(ctx) {
|
1493 |
+
ctx.strokeStyle = "#e0e0e0";
|
1494 |
+
ctx.lineWidth = 0.5;
|
1495 |
+
|
1496 |
+
// Vertical lines
|
1497 |
+
for (let x = 0; x < ctx.canvas.width; x += 40) {
|
1498 |
+
ctx.beginPath();
|
1499 |
+
ctx.moveTo(x, 0);
|
1500 |
+
ctx.lineTo(x, ctx.canvas.height);
|
1501 |
+
ctx.stroke();
|
1502 |
+
}
|
1503 |
+
|
1504 |
+
// Horizontal lines
|
1505 |
+
for (let y = 0; y < ctx.canvas.height; y += 40) {
|
1506 |
+
ctx.beginPath();
|
1507 |
+
ctx.moveTo(0, y);
|
1508 |
+
ctx.lineTo(ctx.canvas.width, y);
|
1509 |
+
ctx.stroke();
|
1510 |
+
}
|
1511 |
+
}
|
1512 |
+
|
1513 |
+
function drawPoint(
|
1514 |
+
ctx,
|
1515 |
+
x,
|
1516 |
+
y,
|
1517 |
+
color,
|
1518 |
+
label,
|
1519 |
+
radius = 8,
|
1520 |
+
strokeColor = "#333",
|
1521 |
+
strokeWidth = 1
|
1522 |
+
) {
|
1523 |
+
ctx.beginPath();
|
1524 |
+
ctx.arc(x, y, radius, 0, Math.PI * 2);
|
1525 |
+
ctx.fillStyle = color;
|
1526 |
+
ctx.fill();
|
1527 |
+
ctx.strokeStyle = strokeColor;
|
1528 |
+
ctx.lineWidth = strokeWidth;
|
1529 |
+
ctx.stroke();
|
1530 |
+
|
1531 |
+
// Label
|
1532 |
+
ctx.fillStyle = "#333";
|
1533 |
+
ctx.font = "12px Arial";
|
1534 |
+
ctx.textAlign = "center";
|
1535 |
+
ctx.fillText(label, x, y - radius - 5);
|
1536 |
+
}
|
1537 |
+
|
1538 |
+
function drawLine(
|
1539 |
+
ctx,
|
1540 |
+
x1,
|
1541 |
+
y1,
|
1542 |
+
x2,
|
1543 |
+
y2,
|
1544 |
+
color = "#333",
|
1545 |
+
dash = [],
|
1546 |
+
width = 1
|
1547 |
+
) {
|
1548 |
+
ctx.beginPath();
|
1549 |
+
ctx.setLineDash(dash);
|
1550 |
+
ctx.strokeStyle = color;
|
1551 |
+
ctx.lineWidth = width;
|
1552 |
+
ctx.moveTo(x1, y1);
|
1553 |
+
ctx.lineTo(x2, y2);
|
1554 |
+
ctx.stroke();
|
1555 |
+
ctx.setLineDash([]);
|
1556 |
+
}
|
1557 |
+
|
1558 |
+
function drawTextDocuments(ctx, docs, query) {
|
1559 |
+
ctx.fillStyle = "#333";
|
1560 |
+
ctx.font = "14px Arial";
|
1561 |
+
ctx.textAlign = "left";
|
1562 |
+
|
1563 |
+
// Draw title
|
1564 |
+
ctx.fillText("Original Text Documents:", 20, 30);
|
1565 |
+
|
1566 |
+
// Draw documents
|
1567 |
+
let y = 60;
|
1568 |
+
docs.slice(0, 5).forEach((doc) => {
|
1569 |
+
ctx.fillStyle = "#3498db";
|
1570 |
+
ctx.fillText(`D${doc.id}: ${doc.text}`, 20, y);
|
1571 |
+
y += 25;
|
1572 |
+
});
|
1573 |
+
|
1574 |
+
// Draw query
|
1575 |
+
y += 20;
|
1576 |
+
ctx.fillStyle = "#e74c3c";
|
1577 |
+
ctx.fillText(`Query: "${query.text}"`, 20, y);
|
1578 |
+
|
1579 |
+
// Instructions
|
1580 |
+
y += 40;
|
1581 |
+
ctx.fillStyle = "#333";
|
1582 |
+
ctx.fillText(
|
1583 |
+
"Step 1: These documents will be converted to vector embeddings",
|
1584 |
+
20,
|
1585 |
+
y
|
1586 |
+
);
|
1587 |
+
ctx.fillText("that capture their semantic meaning.", 20, y + 20);
|
1588 |
+
}
|
1589 |
+
|
1590 |
+
function drawTokenizedDocuments(ctx, docs, query) {
|
1591 |
+
ctx.fillStyle = "#333";
|
1592 |
+
ctx.font = "14px Arial";
|
1593 |
+
ctx.textAlign = "left";
|
1594 |
+
|
1595 |
+
// Draw title
|
1596 |
+
ctx.fillText("Tokenized Documents:", 20, 30);
|
1597 |
+
|
1598 |
+
// Draw vocabulary
|
1599 |
+
ctx.fillText(
|
1600 |
+
"Vocabulary: dog, cat, train, pet, health, food, guide, home, behavior, puppy",
|
1601 |
+
20,
|
1602 |
+
50
|
1603 |
+
);
|
1604 |
+
|
1605 |
+
// Draw documents with highlighted tokens
|
1606 |
+
let y = 80;
|
1607 |
+
docs.slice(0, 5).forEach((doc) => {
|
1608 |
+
ctx.fillStyle = "#3498db";
|
1609 |
+
ctx.fillText(`D${doc.id}: ${doc.text}`, 20, y);
|
1610 |
+
|
1611 |
+
// Show token highlighting
|
1612 |
+
for (let i = 0; i < vocabulary.length; i++) {
|
1613 |
+
if (
|
1614 |
+
doc.vector[i] > 0 &&
|
1615 |
+
doc.text.toLowerCase().includes(vocabulary[i])
|
1616 |
+
) {
|
1617 |
+
const startX = 20 + ctx.measureText(`D${doc.id}: `).width;
|
1618 |
+
const wordStart = doc.text.toLowerCase().indexOf(vocabulary[i]);
|
1619 |
+
const prefix = doc.text.substring(0, wordStart);
|
1620 |
+
const prefixWidth = ctx.measureText(prefix).width;
|
1621 |
+
const wordWidth = ctx.measureText(vocabulary[i]).width;
|
1622 |
+
|
1623 |
+
ctx.fillStyle = "rgba(46, 204, 113, 0.3)";
|
1624 |
+
ctx.fillRect(startX + prefixWidth, y - 12, wordWidth, 15);
|
1625 |
+
}
|
1626 |
+
}
|
1627 |
+
|
1628 |
+
y += 25;
|
1629 |
+
});
|
1630 |
+
|
1631 |
+
// Draw query with highlighted tokens
|
1632 |
+
y += 20;
|
1633 |
+
ctx.fillStyle = "#e74c3c";
|
1634 |
+
ctx.fillText(`Query: "${query.text}"`, 20, y);
|
1635 |
+
|
1636 |
+
// Highlight query tokens
|
1637 |
+
for (let i = 0; i < vocabulary.length; i++) {
|
1638 |
+
if (
|
1639 |
+
query.vector[i] > 0 &&
|
1640 |
+
query.text.toLowerCase().includes(vocabulary[i])
|
1641 |
+
) {
|
1642 |
+
const startX = 20 + ctx.measureText(`Query: "`).width;
|
1643 |
+
const wordStart = query.text.toLowerCase().indexOf(vocabulary[i]);
|
1644 |
+
const prefix = query.text.substring(0, wordStart);
|
1645 |
+
const prefixWidth = ctx.measureText(prefix).width;
|
1646 |
+
const wordWidth = ctx.measureText(vocabulary[i]).width;
|
1647 |
+
|
1648 |
+
ctx.fillStyle = "rgba(231, 76, 60, 0.3)";
|
1649 |
+
ctx.fillRect(startX + prefixWidth, y - 12, wordWidth, 15);
|
1650 |
+
}
|
1651 |
+
}
|
1652 |
+
}
|
1653 |
+
|
1654 |
+
function drawSparseVectors(ctx, docs, query, step, model) {
|
1655 |
+
const barWidth = 15;
|
1656 |
+
const barSpacing = 5;
|
1657 |
+
const startX = 40;
|
1658 |
+
const startY = 220;
|
1659 |
+
const maxBarHeight = 100;
|
1660 |
+
|
1661 |
+
if (step >= 1) {
|
1662 |
+
// Draw vocabulary labels on x-axis
|
1663 |
+
ctx.fillStyle = "#333";
|
1664 |
+
ctx.font = "10px Arial";
|
1665 |
+
ctx.textAlign = "center";
|
1666 |
+
|
1667 |
+
vocabulary.forEach((word, i) => {
|
1668 |
+
const x = startX + i * (barWidth + barSpacing) + barWidth / 2;
|
1669 |
+
ctx.fillText(word, x, startY + 15);
|
1670 |
+
});
|
1671 |
+
|
1672 |
+
// Draw axis titles
|
1673 |
+
ctx.textAlign = "center";
|
1674 |
+
ctx.fillText("Vocabulary Terms", 230, startY + 30);
|
1675 |
+
|
1676 |
+
ctx.save();
|
1677 |
+
ctx.translate(15, 150);
|
1678 |
+
ctx.rotate(-Math.PI / 2);
|
1679 |
+
ctx.fillText("Term Weight", 0, 0);
|
1680 |
+
ctx.restore();
|
1681 |
+
|
1682 |
+
// Draw query vector
|
1683 |
+
ctx.fillStyle = "#333";
|
1684 |
+
ctx.font = "12px Arial";
|
1685 |
+
ctx.textAlign = "left";
|
1686 |
+
ctx.fillText("Query vector:", 20, 40);
|
1687 |
+
|
1688 |
+
query.vector.forEach((value, i) => {
|
1689 |
+
const x = startX + i * (barWidth + barSpacing);
|
1690 |
+
const barHeight = value * maxBarHeight;
|
1691 |
+
|
1692 |
+
ctx.fillStyle = value > 0 ? "#e74c3c" : "#f8f9fa";
|
1693 |
+
ctx.fillRect(x, startY - barHeight, barWidth, barHeight);
|
1694 |
+
|
1695 |
+
if (value > 0) {
|
1696 |
+
ctx.fillStyle = "#fff";
|
1697 |
+
ctx.textAlign = "center";
|
1698 |
+
ctx.font = "9px Arial";
|
1699 |
+
ctx.fillText(
|
1700 |
+
value.toFixed(1),
|
1701 |
+
x + barWidth / 2,
|
1702 |
+
startY - barHeight / 2
|
1703 |
+
);
|
1704 |
+
}
|
1705 |
+
|
1706 |
+
// Also draw mini version above
|
1707 |
+
const miniHeight = value * 20;
|
1708 |
+
ctx.fillStyle = value > 0 ? "#e74c3c" : "#f8f9fa";
|
1709 |
+
ctx.fillRect(x, 50, barWidth, miniHeight);
|
1710 |
+
});
|
1711 |
+
|
1712 |
+
if (step >= 2) {
|
1713 |
+
// Draw a document vector for comparison
|
1714 |
+
const matchingDoc = docs.find((d) => d.id === 1); // Dog training guide
|
1715 |
+
|
1716 |
+
ctx.fillStyle = "#333";
|
1717 |
+
ctx.font = "12px Arial";
|
1718 |
+
ctx.textAlign = "left";
|
1719 |
+
ctx.fillText(`Document: "${matchingDoc.text}"`, 20, 100);
|
1720 |
+
|
1721 |
+
matchingDoc.vector.forEach((value, i) => {
|
1722 |
+
const x = startX + i * (barWidth + barSpacing);
|
1723 |
+
const miniHeight = value * 20;
|
1724 |
+
|
1725 |
+
// Mini version above
|
1726 |
+
ctx.fillStyle = value > 0 ? "#3498db" : "#f8f9fa";
|
1727 |
+
ctx.fillRect(x, 110, barWidth, miniHeight);
|
1728 |
+
|
1729 |
+
// Highlight matching terms
|
1730 |
+
if (value > 0 && query.vector[i] > 0) {
|
1731 |
+
ctx.fillStyle = "#2ecc71";
|
1732 |
+
ctx.strokeStyle = "#2ecc71";
|
1733 |
+
ctx.lineWidth = 2;
|
1734 |
+
ctx.strokeRect(x, 50, barWidth, query.vector[i] * 20);
|
1735 |
+
ctx.strokeRect(x, 110, barWidth, miniHeight);
|
1736 |
+
|
1737 |
+
// Draw connection
|
1738 |
+
drawLine(
|
1739 |
+
ctx,
|
1740 |
+
x + barWidth / 2,
|
1741 |
+
50 + query.vector[i] * 20,
|
1742 |
+
x + barWidth / 2,
|
1743 |
+
110,
|
1744 |
+
"#2ecc71",
|
1745 |
+
[],
|
1746 |
+
1
|
1747 |
+
);
|
1748 |
+
}
|
1749 |
+
});
|
1750 |
+
|
1751 |
+
// Show dot product calculation
|
1752 |
+
let dotProduct = 0;
|
1753 |
+
for (let i = 0; i < query.vector.length; i++) {
|
1754 |
+
dotProduct += query.vector[i] * matchingDoc.vector[i];
|
1755 |
+
}
|
1756 |
+
|
1757 |
+
ctx.fillStyle = "#333";
|
1758 |
+
ctx.font = "12px Arial";
|
1759 |
+
ctx.textAlign = "left";
|
1760 |
+
ctx.fillText(`Matching score: ${dotProduct.toFixed(2)}`, 320, 100);
|
1761 |
+
}
|
1762 |
+
}
|
1763 |
+
}
|
1764 |
+
|
1765 |
+
// Update step descriptions
|
1766 |
+
function updateENNStepInfo(step, distanceMetric) {
|
1767 |
+
let title, description;
|
1768 |
+
|
1769 |
+
switch (step) {
|
1770 |
+
case 0:
|
1771 |
+
title = "Step 0: Data points";
|
1772 |
+
description =
|
1773 |
+
"Initial dataset with vectors in feature space. The query point (red) will be compared against all data points.";
|
1774 |
+
break;
|
1775 |
+
case 1:
|
1776 |
+
title = "Step 1: Calculate all distances";
|
1777 |
+
if (distanceMetric === "euclidean") {
|
1778 |
+
description =
|
1779 |
+
"Calculate Euclidean (L2) distance between query and every data point: d = √((x₂-x₁)² + (y₂-y₁)²).";
|
1780 |
+
} else if (distanceMetric === "manhattan") {
|
1781 |
+
description =
|
1782 |
+
"Calculate Manhattan (L1) distance between query and every data point: d = |x₂-x₁| + |y₂-y₁|.";
|
1783 |
+
} else {
|
1784 |
+
description =
|
1785 |
+
"Calculate Cosine similarity between query and data points: similarity = cos(θ) between vectors.";
|
1786 |
+
}
|
1787 |
+
break;
|
1788 |
+
case 2:
|
1789 |
+
title = "Step 2: Sort by distance";
|
1790 |
+
description =
|
1791 |
+
"Sort all data points by their distance to query point (ascending order for distance, descending for similarity).";
|
1792 |
+
break;
|
1793 |
+
case 3:
|
1794 |
+
title = "Step 3: Return nearest neighbors";
|
1795 |
+
description =
|
1796 |
+
"Return the k closest data points (here k=1). This approach guarantees finding the exact nearest neighbor.";
|
1797 |
+
break;
|
1798 |
+
}
|
1799 |
+
|
1800 |
+
ennStepTitle.textContent = title;
|
1801 |
+
ennStepDesc.textContent = description;
|
1802 |
+
}
|
1803 |
+
|
1804 |
+
function updateANNStepInfo(step, algorithm) {
|
1805 |
+
let title, description;
|
1806 |
+
|
1807 |
+
switch (step) {
|
1808 |
+
case 0:
|
1809 |
+
title = "Step 0: Indexed structure";
|
1810 |
+
if (algorithm === "hnsw") {
|
1811 |
+
description =
|
1812 |
+
"HNSW pre-organizes vectors into a navigable small world graph with multiple layers for efficient search.";
|
1813 |
+
} else if (algorithm === "pq") {
|
1814 |
+
description =
|
1815 |
+
"Product Quantization divides the vector space into smaller subspaces and quantizes each dimension group.";
|
1816 |
+
} else {
|
1817 |
+
description =
|
1818 |
+
"Locality-Sensitive Hashing uses hash functions that map similar vectors to the same buckets.";
|
1819 |
+
}
|
1820 |
+
break;
|
1821 |
+
case 1:
|
1822 |
+
title = "Step 1: Navigate to region";
|
1823 |
+
if (algorithm === "hnsw") {
|
1824 |
+
description =
|
1825 |
+
"Search begins at a random entry point in the top layer (sparse connections).";
|
1826 |
+
} else if (algorithm === "pq") {
|
1827 |
+
description =
|
1828 |
+
"The query is mapped to specific regions in each subspace based on quantized centroids.";
|
1829 |
+
} else {
|
1830 |
+
description =
|
1831 |
+
"Query vector is hashed to identify which bucket(s) to search.";
|
1832 |
+
}
|
1833 |
+
break;
|
1834 |
+
case 2:
|
1835 |
+
title = "Step 2: Local search";
|
1836 |
+
if (algorithm === "hnsw") {
|
1837 |
+
description =
|
1838 |
+
"Navigate through connections to find closer and closer neighbors, descending through layers.";
|
1839 |
+
} else if (algorithm === "pq") {
|
1840 |
+
description =
|
1841 |
+
"Compare only with points in the same or nearby quantized regions to limit search space.";
|
1842 |
+
} else {
|
1843 |
+
description =
|
1844 |
+
"Only compute distances for vectors in the same hash bucket, dramatically reducing comparisons.";
|
1845 |
+
}
|
1846 |
+
break;
|
1847 |
+
case 3:
|
1848 |
+
title = "Step 3: Return approximate NN";
|
1849 |
+
if (algorithm === "hnsw") {
|
1850 |
+
description =
|
1851 |
+
"Return the closest point found. May not be the true nearest neighbor, but usually very close.";
|
1852 |
+
} else if (algorithm === "pq") {
|
1853 |
+
description =
|
1854 |
+
"Approximates distances between query and dataset points. Fast but loses some precision.";
|
1855 |
+
} else {
|
1856 |
+
description =
|
1857 |
+
"If points fall into different buckets, LSH might miss true nearest neighbors (accuracy vs. speed tradeoff).";
|
1858 |
+
}
|
1859 |
+
break;
|
1860 |
+
}
|
1861 |
+
|
1862 |
+
annStepTitle.textContent = title;
|
1863 |
+
annStepDesc.textContent = description;
|
1864 |
+
}
|
1865 |
+
|
1866 |
+
function updateSemanticStepInfo(step, model) {
|
1867 |
+
let title, description;
|
1868 |
+
|
1869 |
+
switch (step) {
|
1870 |
+
case 0:
|
1871 |
+
title = "Step 0: Text documents";
|
1872 |
+
description = "Raw text data before encoding into vector space.";
|
1873 |
+
break;
|
1874 |
+
case 1:
|
1875 |
+
title = "Step 1: Generate embeddings";
|
1876 |
+
if (model === "bert") {
|
1877 |
+
description =
|
1878 |
+
"BERT creates dense vector embeddings (768 dimensions) that capture semantic meaning of text.";
|
1879 |
+
} else if (model === "use") {
|
1880 |
+
description =
|
1881 |
+
"Universal Sentence Encoder maps sentences to 512-dimensional vectors that capture meaning.";
|
1882 |
+
} else {
|
1883 |
+
description =
|
1884 |
+
"Domain-specific embeddings capture meaning relevant to particular fields or applications.";
|
1885 |
+
}
|
1886 |
+
break;
|
1887 |
+
case 2:
|
1888 |
+
title = "Step 2: Vector similarity search";
|
1889 |
+
description =
|
1890 |
+
"Calculate similarity (usually cosine) between query vector and document vectors.";
|
1891 |
+
break;
|
1892 |
+
case 3:
|
1893 |
+
title = "Step 3: Return relevant results";
|
1894 |
+
description =
|
1895 |
+
"Rank documents by similarity and return the most relevant. Results include semantic matches, not just exact keyword matches.";
|
1896 |
+
break;
|
1897 |
+
}
|
1898 |
+
|
1899 |
+
semanticStepTitle.textContent = title;
|
1900 |
+
semanticStepDesc.textContent = description;
|
1901 |
+
}
|
1902 |
+
|
1903 |
+
function updateSparseStepInfo(step, model) {
|
1904 |
+
let title, description;
|
1905 |
+
|
1906 |
+
switch (step) {
|
1907 |
+
case 0:
|
1908 |
+
title = "Step 0: Tokenized content";
|
1909 |
+
description =
|
1910 |
+
"Documents broken down into tokens (words/terms) before converting to sparse vector representation.";
|
1911 |
+
break;
|
1912 |
+
case 1:
|
1913 |
+
title = "Step 1: Create sparse vectors";
|
1914 |
+
if (model === "tfidf") {
|
1915 |
+
description =
|
1916 |
+
"TF-IDF weights tokens based on term frequency and inverse document frequency to emphasize distinctive terms.";
|
1917 |
+
} else if (model === "bm25") {
|
1918 |
+
description =
|
1919 |
+
"BM25 extends TF-IDF with better term saturation and document length normalization.";
|
1920 |
+
} else {
|
1921 |
+
description =
|
1922 |
+
"Hybrid representations combine sparse (keyword) and dense (semantic) vectors for better retrieval.";
|
1923 |
+
}
|
1924 |
+
break;
|
1925 |
+
case 2:
|
1926 |
+
title = "Step 2: Inverted index search";
|
1927 |
+
description =
|
1928 |
+
"Lookup only the specific terms present in the query, accessing posting lists through an inverted index.";
|
1929 |
+
break;
|
1930 |
+
case 3:
|
1931 |
+
title = "Step 3: Return matches";
|
1932 |
+
description =
|
1933 |
+
"Return documents with matching terms, ranked by relevance score. Very efficient for exact term matches.";
|
1934 |
+
break;
|
1935 |
+
}
|
1936 |
+
|
1937 |
+
sparseStepTitle.textContent = title;
|
1938 |
+
sparseStepDesc.textContent = description;
|
1939 |
+
}
|
1940 |
+
</script>
|
1941 |
+
</body>
|
1942 |
</html>
|