Spaces:
Runtime error
Runtime error
yeah
Browse files- app.py +131 -0
- chs.json +0 -0
- crawler.py +0 -0
- database.zip +3 -0
- parse.py +67 -0
- requirements.txt +8 -0
app.py
ADDED
|
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import asyncio
|
| 2 |
+
import json
|
| 3 |
+
from websockets.server import serve
|
| 4 |
+
|
| 5 |
+
from langchain.vectorstores import Chroma
|
| 6 |
+
from langchain_huggingface.embeddings import HuggingFaceEmbeddings
|
| 7 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 8 |
+
from langchain_huggingface.llms import HuggingFaceEndpoint
|
| 9 |
+
from langchain.document_loaders import TextLoader
|
| 10 |
+
from langchain.document_loaders import DirectoryLoader
|
| 11 |
+
from langchain import hub
|
| 12 |
+
from langchain_core.runnables import RunnablePassthrough
|
| 13 |
+
from langchain_core.output_parsers import StrOutputParser
|
| 14 |
+
from langchain.chains import create_history_aware_retriever
|
| 15 |
+
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
| 16 |
+
from langchain.chains import create_retrieval_chain
|
| 17 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
| 18 |
+
from langchain_core.runnables.history import RunnableWithMessageHistory
|
| 19 |
+
from langchain_core.chat_history import BaseChatMessageHistory
|
| 20 |
+
from langchain_community.chat_message_histories import ChatMessageHistory
|
| 21 |
+
|
| 22 |
+
loader = DirectoryLoader('./database', glob="./*.txt", loader_cls=TextLoader)
|
| 23 |
+
|
| 24 |
+
documents = loader.load()
|
| 25 |
+
|
| 26 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
| 27 |
+
texts = text_splitter.split_documents(documents)
|
| 28 |
+
|
| 29 |
+
persist_directory = 'db'
|
| 30 |
+
|
| 31 |
+
embedding = HuggingFaceEmbeddings()
|
| 32 |
+
|
| 33 |
+
vectordb = Chroma.from_documents(documents=texts,
|
| 34 |
+
embedding=embedding,
|
| 35 |
+
persist_directory=persist_directory)
|
| 36 |
+
|
| 37 |
+
vectordb.persist()
|
| 38 |
+
vectordb = None
|
| 39 |
+
|
| 40 |
+
vectordb = Chroma(persist_directory=persist_directory,
|
| 41 |
+
embedding_function=embedding)
|
| 42 |
+
|
| 43 |
+
def format_docs(docs):
|
| 44 |
+
return "\n\n".join(doc.page_content for doc in docs)
|
| 45 |
+
|
| 46 |
+
retriever = vectordb.as_retriever()
|
| 47 |
+
prompt = hub.pull("rlm/rag-prompt")
|
| 48 |
+
llm = HuggingFaceEndpoint(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1")
|
| 49 |
+
rag_chain = (
|
| 50 |
+
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
| 51 |
+
| prompt
|
| 52 |
+
| llm
|
| 53 |
+
| StrOutputParser()
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
contextualize_q_system_prompt = """Given a chat history and the latest user question \
|
| 57 |
+
which might reference context in the chat history, formulate a standalone question \
|
| 58 |
+
which can be understood without the chat history. Do NOT answer the question, \
|
| 59 |
+
just reformulate it if needed and otherwise return it as is."""
|
| 60 |
+
contextualize_q_prompt = ChatPromptTemplate.from_messages(
|
| 61 |
+
[
|
| 62 |
+
("system", contextualize_q_system_prompt),
|
| 63 |
+
MessagesPlaceholder("chat_history"),
|
| 64 |
+
("human", "{input}"),
|
| 65 |
+
]
|
| 66 |
+
)
|
| 67 |
+
history_aware_retriever = create_history_aware_retriever(
|
| 68 |
+
llm, retriever, contextualize_q_prompt
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
qa_system_prompt = """You are an assistant for question-answering tasks. \
|
| 72 |
+
Use the following pieces of retrieved context to answer the question. \
|
| 73 |
+
If you don't know the answer, just say that you don't know. \
|
| 74 |
+
Use three sentences maximum and keep the answer concise.\
|
| 75 |
+
|
| 76 |
+
{context}"""
|
| 77 |
+
qa_prompt = ChatPromptTemplate.from_messages(
|
| 78 |
+
[
|
| 79 |
+
("system", qa_system_prompt),
|
| 80 |
+
MessagesPlaceholder("chat_history"),
|
| 81 |
+
("human", "{input}"),
|
| 82 |
+
]
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
store = {}
|
| 86 |
+
|
| 87 |
+
def get_session_history(session_id: str) -> BaseChatMessageHistory:
|
| 88 |
+
if session_id not in store:
|
| 89 |
+
store[session_id] = ChatMessageHistory()
|
| 90 |
+
return store[session_id]
|
| 91 |
+
|
| 92 |
+
question_answer_chain = create_stuff_documents_chain(llm, qa_prompt)
|
| 93 |
+
rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)
|
| 94 |
+
|
| 95 |
+
conversational_rag_chain = RunnableWithMessageHistory(
|
| 96 |
+
rag_chain,
|
| 97 |
+
get_session_history,
|
| 98 |
+
input_messages_key="input",
|
| 99 |
+
history_messages_key="chat_history",
|
| 100 |
+
output_messages_key="answer",
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
print("-------")
|
| 104 |
+
print("started")
|
| 105 |
+
print("-------")
|
| 106 |
+
|
| 107 |
+
async def echo(websocket):
|
| 108 |
+
async for message in websocket:
|
| 109 |
+
data = json.loads(message)
|
| 110 |
+
if not "message" in message:
|
| 111 |
+
return
|
| 112 |
+
if not "token" in message:
|
| 113 |
+
return
|
| 114 |
+
m = data["message"]
|
| 115 |
+
token = data["token"]
|
| 116 |
+
userData = json.load(open("userData.json", "w"))
|
| 117 |
+
docs = retriever.get_relevant_documents(m)
|
| 118 |
+
userData[token]["docs"] = str(docs)
|
| 119 |
+
response = conversational_rag_chain.invoke(
|
| 120 |
+
{"input": m},
|
| 121 |
+
config={
|
| 122 |
+
"configurable": {"session_id": token}
|
| 123 |
+
},
|
| 124 |
+
)["answer"]
|
| 125 |
+
await websocket.send(json.dumps({"response": response}))
|
| 126 |
+
|
| 127 |
+
async def main():
|
| 128 |
+
async with serve(echo, "0.0.0.0", 7860):
|
| 129 |
+
await asyncio.Future()
|
| 130 |
+
|
| 131 |
+
asyncio.run(main())
|
chs.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
crawler.py
ADDED
|
File without changes
|
database.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:93f27b61a3f0f03c0bdca772695ca92d99a4e037d0a7b2d08b71b0eb09cc33c9
|
| 3 |
+
size 253849
|
parse.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
# Configuration
|
| 5 |
+
name = "chs.json"
|
| 6 |
+
outputFolder = "database"
|
| 7 |
+
deleteKeys = [
|
| 8 |
+
"images",
|
| 9 |
+
"tags",
|
| 10 |
+
"html"
|
| 11 |
+
]
|
| 12 |
+
typeScrape = {
|
| 13 |
+
"article": "text",
|
| 14 |
+
"event": "description",
|
| 15 |
+
"list": "items"
|
| 16 |
+
}
|
| 17 |
+
|
| 18 |
+
data = json.load(open(name, "r"))
|
| 19 |
+
|
| 20 |
+
i = -1
|
| 21 |
+
k = 0
|
| 22 |
+
try:
|
| 23 |
+
os.mkdir(outputFolder)
|
| 24 |
+
except: pass
|
| 25 |
+
|
| 26 |
+
for item in data:
|
| 27 |
+
i += 1
|
| 28 |
+
for key in deleteKeys:
|
| 29 |
+
if key in item:
|
| 30 |
+
item[key]
|
| 31 |
+
del item[key]
|
| 32 |
+
data[i] = item
|
| 33 |
+
if "type" in item:
|
| 34 |
+
for typeKey, scrapeText in typeScrape.items():
|
| 35 |
+
try:
|
| 36 |
+
if item["type"] == typeKey:
|
| 37 |
+
k += 1
|
| 38 |
+
file = open(f"{outputFolder}/chs-{typeKey}-{k}.txt", "a")
|
| 39 |
+
if item["type"] == "list":
|
| 40 |
+
text = ""
|
| 41 |
+
if "title" in item:
|
| 42 |
+
text = item["title"]
|
| 43 |
+
file.write(text)
|
| 44 |
+
for pair in item[scrapeText]:
|
| 45 |
+
text = ""
|
| 46 |
+
if "title" in pair:
|
| 47 |
+
text = "\n" + pair["title"]
|
| 48 |
+
if "summary" in pair:
|
| 49 |
+
if pair["summary"].replace(" ", "") != pair["title"].replace(" ", ""):
|
| 50 |
+
text += "\n" + pair["summary"].replace(pair["title"], "")
|
| 51 |
+
if "fsElementContent" in pair:
|
| 52 |
+
if pair["fsElementContent"].replace(" ", "") != pair["title"].replace(" ", ""):
|
| 53 |
+
text += "\n" + pair["fsElementContent"]
|
| 54 |
+
if "fsElementFooterContent" in pair:
|
| 55 |
+
if pair["fsElementFooterContent"].replace(" ", "") != pair["title"].replace(" ", ""):
|
| 56 |
+
text += "\n" + pair["fsElementFooterContent"]
|
| 57 |
+
if "fsElementHeaderContent" in pair:
|
| 58 |
+
if pair["fsElementHeaderContent"].replace(" ", "") != pair["title"].replace(" ", ""):
|
| 59 |
+
text += "\n" + pair["fsElementHeaderContent"]
|
| 60 |
+
if text != "":
|
| 61 |
+
file.write(text)
|
| 62 |
+
else:
|
| 63 |
+
text = item[scrapeText]
|
| 64 |
+
if text != "":
|
| 65 |
+
file.write(text)
|
| 66 |
+
except: pass
|
| 67 |
+
json.dump(data, open(name, "w"), indent = 6)
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
websockets
|
| 2 |
+
langchain
|
| 3 |
+
langchain-community
|
| 4 |
+
huggingface_hub
|
| 5 |
+
tiktoken
|
| 6 |
+
chromadb
|
| 7 |
+
langchain-huggingface
|
| 8 |
+
accelerate
|