from PIL import Image import cv2 import numpy as np def pil_to_opencv(image): numpy_image = np.array(image) opencv_image = cv2.cvtColor(numpy_image, cv2.COLOR_RGB2BGR) return opencv_image def opencv_to_pil(image): # Convert OpenCV BGR image to NumPy array numpy_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Convert NumPy array to PIL Image pil_image = Image.fromarray(numpy_image) return pil_image def generate(image, algorithm_name): algorithm_functions = { "Sobel Edge Detection": sobel_edge_detection, "Canny Edge Detection": canny_edge_detection, "Hough Lines": hough_lines, "Laplacian Edge Detection": laplacian_edge_detection, "Contours Detection": contours_detection, "Prewitt Edge Detection": prewitt_edge_detection, "Gradient Magnitude": gradient_magnitude, "Corner Detection": corner_detection, } if algorithm_name in algorithm_functions: algorithm_function = algorithm_functions[algorithm_name] processed_image = algorithm_function(image) else: processed_image = () return processed_image def sobel_edge_detection(image): gray = pil_to_opencv(image) sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=5) sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=5) magnitude = np.sqrt(sobelx**2 + sobely**2) magnitude = np.uint8(magnitude) return magnitude def canny_edge_detection(image): gray = pil_to_opencv(image) edges = cv2.Canny(gray, 50, 150, apertureSize=3) return edges def hough_lines(image): gray = pil_to_opencv(image) edges = cv2.Canny(gray, 50, 150) lines = cv2.HoughLines(edges, 1, np.pi / 180, threshold=100) result = image.copy() for line in lines: rho, theta = line[0] a = np.cos(theta) b = np.sin(theta) x0 = a * rho y0 = b * rho x1 = int(x0 + 1000 * (-b)) y1 = int(y0 + 1000 * (a)) x2 = int(x0 - 1000 * (-b)) y2 = int(y0 - 1000 * (a)) cv2.line(result, (x1, y1), (x2, y2), (0, 0, 255), 2) print("passed") return result def laplacian_edge_detection(image): gray = pil_to_opencv(image) laplacian = cv2.Laplacian(gray, cv2.CV_64F) laplacian = np.uint8(np.absolute(laplacian)) return laplacian def contours_detection(image): gray = pil_to_opencv(image) contours, _ = cv2.findContours(gray, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) result = np.zeros_like(image) cv2.drawContours(result, contours, -1, (0, 255, 0), 2) print("passed") return result def prewitt_edge_detection(image): gray = pil_to_opencv(image) prewittx = cv2.filter2D( gray, cv2.CV_64F, np.array([[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]]) ) prewitty = cv2.filter2D( gray, cv2.CV_64F, np.array([[-1, -1, -1], [0, 0, 0], [1, 1, 1]]) ) magnitude = np.sqrt(prewittx**2 + prewitty**2) magnitude = np.uint8(magnitude) return magnitude def gradient_magnitude(image): gray = pil_to_opencv(image) sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=5) sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=5) magnitude = np.sqrt(sobelx**2 + sobely**2) magnitude = np.uint8(magnitude) print("passed") return magnitude def corner_detection(image): gray = pil_to_opencv(image) corners = cv2.goodFeaturesToTrack( gray, maxCorners=100, qualityLevel=0.01, minDistance=10 ) result = np.zeros_like(image) corners = np.int0(corners) for i in corners: x, y = i.ravel() cv2.circle(result, (x, y), 3, 255, -1) print("passed") return result