Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer, GPT2Config
|
4 |
+
from rotary_embedding_torch import RotaryEmbedding
|
5 |
+
import gradio as gr
|
6 |
+
import spaces
|
7 |
+
# Define the max length used during training
|
8 |
+
max_length = 8192
|
9 |
+
|
10 |
+
# Load the model and tokenizer from Hugging Face Hub
|
11 |
+
model_name = "archit11/gpt2final"
|
12 |
+
config = GPT2Config.from_pretrained(model_name)
|
13 |
+
model = GPT2LMHeadModel.from_pretrained(model_name)
|
14 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
15 |
+
|
16 |
+
# Add rotary embeddings
|
17 |
+
rotary_emb = RotaryEmbedding(
|
18 |
+
dim=32,
|
19 |
+
interpolate_factor=4.0,
|
20 |
+
)
|
21 |
+
for layer in model.transformer.h:
|
22 |
+
layer.attn.rotary_emb = rotary_emb
|
23 |
+
|
24 |
+
# Set the model to evaluation mode
|
25 |
+
model.eval()
|
26 |
+
|
27 |
+
# Define the inference function
|
28 |
+
@spaces.GPU(duration=120)
|
29 |
+
def generate_text(prompt, max_length=100, temperature=0.7, top_p=0.9):
|
30 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
31 |
+
|
32 |
+
# Generate text
|
33 |
+
with torch.no_grad():
|
34 |
+
output = model.generate(
|
35 |
+
input_ids,
|
36 |
+
max_length=max_length,
|
37 |
+
temperature=temperature,
|
38 |
+
top_p=top_p,
|
39 |
+
num_return_sequences=1,
|
40 |
+
do_sample=True,
|
41 |
+
pad_token_id=tokenizer.eos_token_id
|
42 |
+
)
|
43 |
+
|
44 |
+
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
45 |
+
return generated_text
|
46 |
+
|
47 |
+
# Create Gradio interface
|
48 |
+
iface = gr.Interface(
|
49 |
+
fn=generate_text,
|
50 |
+
inputs=[
|
51 |
+
gr.Textbox(lines=5, label="Prompt"),
|
52 |
+
gr.Slider(minimum=10, maximum=1000, value=100, step=10, label="Max Length"),
|
53 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
|
54 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top-p")
|
55 |
+
],
|
56 |
+
outputs=gr.Textbox(lines=10, label="Generated Text"),
|
57 |
+
title="Custom GPT-2 Text Generation",
|
58 |
+
description="Enter a prompt to generate text using the custom-trained GPT-2 model."
|
59 |
+
)
|
60 |
+
|
61 |
+
# Launch the interface
|
62 |
+
iface.launch()
|