shuka_demo / app.py
archit11's picture
Update app.py
011a958 verified
raw
history blame
1.9 kB
import transformers
import gradio as gr
import torch
import numpy as np
from typing import Dict, List
import spaces
# Constants
MODEL_NAME = 'sarvamai/shuka_v1'
SAMPLE_RATE = 16000
MAX_NEW_TOKENS = 256
# Load the ShukaPipeline
def load_pipeline():
model = transformers.AutoModel.from_pretrained(MODEL_NAME, trust_remote_code=True)
pipeline = transformers.pipeline(
"shuka-pipeline",
model=model,
torch_dtype=torch.float16,
device=0 if torch.cuda.is_available() else -1,
)
return pipeline
pipe = load_pipeline()
def create_conversation_turns(prompt: str) -> List[Dict[str, str]]:
return [
{'role': 'system', 'content': 'Respond naturally and informatively.'},
{'role': 'user', 'content': prompt}
]
@spaces.GPU(duration=120)
def transcribe_and_respond(audio: np.ndarray) -> str:
try:
# Ensure audio is float32
if audio.dtype != np.float32:
audio = audio.astype(np.float32)
# Create input for the pipeline
turns = create_conversation_turns("<|audio|>")
inputs = {
'audio': audio,
'turns': turns,
'sampling_rate': SAMPLE_RATE
}
# Generate response
response = pipe(inputs, max_new_tokens=MAX_NEW_TOKENS, temperature=0.7, repetition_penalty=1.1)
return response
except Exception as e:
return f"Error processing audio: {str(e)}"
# Create the Gradio interface
iface = gr.Interface(
fn=transcribe_and_respond,
inputs=gr.Audio(sources="microphone", type="numpy", sampling_rate=SAMPLE_RATE),
outputs="text",
title="Live Voice Input for Transcription and Response",
description="Speak into your microphone, and the model will respond naturally and informatively.",
live=True
)
# Launch the app
if __name__ == "__main__":
iface.launch()