Spaces:
Sleeping
Sleeping
import transformers | |
import gradio as gr | |
import librosa | |
import torch | |
import spaces | |
def transcribe_and_respond(audio_file): | |
try: | |
# Load the model pipeline | |
pipe = transformers.pipeline( | |
model='sarvamai/shuka_v1', | |
trust_remote_code=True, | |
device=0, | |
torch_dtype=torch.bfloat16 | |
) | |
# Load the audio file | |
audio, sr = librosa.load(audio_file, sr=16000) | |
# Print the path of the audio file | |
print(f"Audio file path: {audio_file}") | |
# Prepare turns with a placeholder for the audio | |
turns = [ | |
{'role': 'system', 'content': 'Respond naturally and informatively.'}, | |
{'role': 'user', 'content': '<|audio|>'} | |
] | |
# Print the constructed prompt | |
print(f"Constructed prompt: {turns}") | |
# Run the pipeline with the audio and constructed prompt | |
output = pipe({'audio': audio, 'turns': turns, 'sampling_rate': sr}, max_new_tokens=512) | |
# Print the output from the model | |
print(f"Model output: {output}") | |
# Return the output for the Gradio interface | |
return output | |
except Exception as e: | |
return f"Error: {str(e)}" | |
# Set up the Gradio interface | |
iface = gr.Interface( | |
fn=transcribe_and_respond, | |
inputs=gr.Audio(sources="microphone", type="filepath"), # Accept audio input from microphone | |
outputs="text", # Output as text | |
title="Live Transcription and Response", | |
description="Speak into your microphone, and the model will respond naturally and informatively.", | |
live=True # Enable live processing | |
) | |
# Launch the interface | |
if __name__ == "__main__": | |
iface.launch() | |