File size: 7,905 Bytes
d51b5dd
b2fe07f
d51b5dd
 
 
 
ea57346
d51b5dd
 
 
 
 
 
 
 
d27b2fd
d51b5dd
 
e2aff85
 
 
 
d51b5dd
 
b2fe07f
 
 
 
 
0151cf2
 
 
 
 
 
 
 
 
 
 
 
b2fe07f
d51b5dd
 
 
310f3be
 
d51b5dd
 
 
 
 
0151cf2
d51b5dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0151cf2
d51b5dd
 
 
 
 
 
e1ff935
b2fe07f
 
 
 
 
 
0151cf2
d51b5dd
0151cf2
 
 
d51b5dd
e11de81
0151cf2
e11de81
d51b5dd
e11de81
d51b5dd
 
 
 
 
 
 
 
0151cf2
 
 
d51b5dd
0151cf2
d51b5dd
 
 
 
 
 
 
9adedb7
 
 
 
 
401dc2f
9adedb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
310f3be
9adedb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
310f3be
 
 
9adedb7
 
310f3be
0151cf2
 
229c2ad
e1ff935
d51b5dd
 
c18ab4f
0151cf2
9adedb7
0151cf2
 
9adedb7
d51b5dd
 
 
 
1b8088a
d51b5dd
 
 
 
 
d27b2fd
d51b5dd
 
0151cf2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
from pathlib import Path
from num2words import num2words
import numpy as np
import random
import re
import textwrap
import torch
from shapely.geometry.polygon import Polygon
import aggdraw
from PIL import Image, ImageDraw, ImageOps, ImageFilter, ImageFont, ImageColor

import gradio as gr

from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM

finetuned = AutoModelForCausalLM.from_pretrained('model')
tokenizer = AutoTokenizer.from_pretrained('gpt2')

device = "cuda:0" if torch.cuda.is_available() else "cpu"
print(device)
finetuned = finetuned.to(device)

# Utility functions

def containsNumber(value):
    for character in value:
        if character.isdigit():
            return True
    return False
    
def creativity(intensity):
    if(intensity == 'Low'):
        top_p = 0.95
        top_k = 10
    elif(intensity == 'Medium'):
        top_p = 0.9
        top_k = 50
    if(intensity == 'High'):
        top_p = 0.85
        top_k = 100
    return top_p, top_k

housegan_labels = {"living_room": 1, "kitchen": 2, "bedroom": 3, "bathroom": 4, "missing": 5, "closet": 6, 
                         "balcony": 7, "corridor": 8, "dining_room": 9, "laundry_room": 10}

architext_colors = [[0, 0, 0], [249, 222, 182], [195, 209, 217], [250, 120, 128], [126, 202, 234], [190, 0, 198], [255, 255, 255], 
                   [6, 53, 17], [17, 33, 58], [132, 151, 246], [197, 203, 159], [6, 53, 17],]

regex = re.compile(".*?\((.*?)\)")

def draw_polygons(polygons, colors, im_size=(256, 256), b_color="white", fpath=None):

    image = Image.new("RGBA", im_size, color="white")
    draw = aggdraw.Draw(image)

    for poly, color, in zip(polygons, colors):
        #get initial polygon coordinates
        xy = poly.exterior.xy
        coords = np.dstack((xy[1], xy[0])).flatten()
        # draw it on canvas, with the appropriate colors
        brush = aggdraw.Brush((0, 0, 0), opacity=255)
        draw.polygon(coords, brush)
        
        
        #get inner polygon coordinates
        small_poly = poly.buffer(-1, resolution=32, cap_style=2, join_style=2, mitre_limit=5.0)
        if small_poly.geom_type == 'MultiPolygon':
            mycoordslist = [list(x.exterior.coords) for x in small_poly]
            for coord in mycoordslist:
                coords = np.dstack((np.array(coord)[:,1], np.array(coord)[:, 0])).flatten()
                brush2 = aggdraw.Brush((0, 0, 0), opacity=255)
                draw.polygon(coords, brush2)
        elif poly.geom_type == 'Polygon':
            #get inner polygon coordinates
            xy2 = small_poly.exterior.xy
            coords2 = np.dstack((xy2[1], xy2[0])).flatten()
            # draw it on canvas, with the appropriate colors
            brush2 = aggdraw.Brush((color[0], color[1], color[2]), opacity=255)
            draw.polygon(coords2, brush2)

    image = Image.frombytes("RGBA", (256,256), draw.tobytes()).transpose(Image.FLIP_TOP_BOTTOM)

    if(fpath):
        image.save(fpath, quality=100, subsampling=0)

    return draw, image

def prompt_to_layout(user_prompt, top_p, top_k, fpath=None):

    if(containsNumber(user_prompt) == True):
        spaced_prompt = user_prompt.split(' ')
        new_prompt = ' '.join([word if word.isdigit() == False else num2words(int(word)).lower() for word in spaced_prompt])
        model_prompt = '[User prompt] {} [Layout]'.format(new_prompt)
        
    top_p, top_k = creativity(intensity)
    model_prompt = '[User prompt] {} [Layout]'.format(user_prompt)
    input_ids = tokenizer(model_prompt, return_tensors='pt')
    output = finetuned.generate(**input_ids, do_sample=True, top_p=top_p, top_k=top_k, 
                                eos_token_id=50256, max_length=400)
    output = tokenizer.batch_decode(output, skip_special_tokens=True)
    
    layout = output[0].split('[User prompt]')[1].split('[Layout] ')[1].split(', ')
    spaces = [txt.split(':')[0] for txt in layout]

    coordinates = [txt.split(':')[1] for txt in layout]
    coordinates = [re.findall(regex, coord) for coord in coordinates]
    
    polygons = []
    for coord in coordinates:
        polygons.append([point.split(',') for point in coord])
        
    geom = []
    for poly in polygons:
        scaled_poly = scale(Polygon(np.array(poly, dtype=int)), xfact=2, yfact=2, origin=(0,0))
        geom.append(scaled_poly)
        #geom.append(Polygon(np.array(poly, dtype=int)))
        
    colors = [architext_colors2[housegan_labels[space]] for space in spaces]
    
    _, im = draw_polygons(geom, colors, fpath=fpath)
    
    return im
    
# Gradio App

custom_css="""
@import url("https://use.typekit.net/nid3pfr.css");
.gradio_page {
  display: flex;
  width: 100vw;
  min-height: 50vh;
  flex-direction: column;
  justify-content: center;
  align-items: center;
  margin: 0px;
  max-width: 100vw;
  background: #FFFFFF;
}
.gradio_interface {
  width: 100vw;
  max-width: 1500px;
}
.gradio_interface[theme=default] .panel_buttons {
  justify-content: flex-end;
}
.gradio_interface[theme=default] .panel_button {
  flex: 0 0 0;
  min-width: 150px;
}
.gradio_interface[theme=default] .panel_button.submit { 
  background: #11213A;
  border-radius: 5px;
  color: #FFFFFF;
  text-transform: uppercase;
  min-width: 150px;
  height: 4em;
  letter-spacing: 0.15em;
  flex: 0 0 0;
}
.gradio_interface[theme=default] .panel_button.submit:hover { 
  background: #000000;
}

.input_text {
  font: 200 50px garamond-premier-pro-display, serif;
  line-height: 115%;
  color: #11213A;
  border-radius: 0px;
  border: 3px solid #11213A;
}
.input_text:focus {
  border-color: #FA7880;
}
.gradio_interface[theme=default] .input_text input, 
.gradio_interface[theme=default] .input_text textarea {
  padding: 30px;
}
.input_text textarea:focus-visible { 
  outline: none;
}
.panel:nth-child(1) {
  margin-left: 50px;
  margin-right: 50px;
  margin-top: 80px;
  margin-bottom: 80px;
  max-width: 750px;
}
.panel:nth-child(2) {
  background: #D3ECF5;
}
.gradio_interface[theme=default] .output_image .image_preview_holder {
  background: #D3ECF5;
}
.gradio_interface[theme=default] .component_set  {
  background: transparent;
  opacity: 1 !important;
}""" 
creative_slider = gr.inputs.Radio(["Low", "Medium", "High"], default="Medium", label='Creativity')
textbox = gr.inputs.Textbox(placeholder='a house with two bedrooms and one bathroom', lines="2", 
                            label="DESCRIBE YOUR DESIGN")
generated = gr.outputs.Image(label='Generated Layout')

iface = gr.Interface(fn=prompt_to_layout, inputs=[textbox, creative_slider], 
                      outputs=[generated],
                      css=custom_css,
                      allow_flagging=False,
                      allow_screenshot=False,
                      thumbnail="thumbnail_gradio.PNG",
                      description='Demo of Semantic Generation of Residential Layouts \n',
                      article='''<div>
    <p> This app allows users the use of natural language prompts for appartment layout generation, using a variety of semantic information:</p>
     <ul>
      <li> <strong>typology</strong>: "a house with two bedrooms and two bathrooms"</li>
      <li> <strong>enumeration</strong>: "a house with five rooms"</li>
      <li> <strong>adjacency</strong>: "the kitchen is adjacent to a bedroom", "the living room is not adjacent to the bathroom"</li>
      <li> <strong>location</strong>: "a house with a bedroom in the north east side"</li>
    </ul>
    <p>You can also create a mutation of the generated layout by enabling the 'Mutate' option.</p>
    <p> Made by: <a href='https://www.linkedin.com/in/theodorosgalanos/'>Theodoros </a> <a href='https://twitter.com/TheodoreGalanos'> Galanos</a> and <a href='https://twitter.com/tylerlastovich'>Tyler Lastovich</a>, using a finetuned <a href='https://huggingface.co/EleutherAI/gpt-neo-125M'> GPT-Neo</a> model. </p>
</div>''')

iface.launch()