arcosx's picture
Update app.py
256bf31
import gradio as gr
import pandas as pd
from rdkit import Chem
from rdkit.Chem import AllChem
import joblib
model = joblib.load('CHO.pkl')
def predict(smiles):
if smiles.strip() == "":
raise gr.Error("SMILES 输入错误")
mol = Chem.MolFromSmiles(smiles)
if mol == None:
raise gr.Error("SMILES 输入错误")
mol_ECFP4 = list(AllChem.GetMorganFingerprintAsBitVect(mol, 2, nBits=1024).ToBitString())
preprocess_data = pd.DataFrame([mol_ECFP4])
result = model.predict(preprocess_data)
postprocess_data = '{:.2e}'.format(pow(10, result[0]))
return postprocess_data
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
inputs=gr.Textbox(lines=2, label="请输入化合物的SMILES")
with gr.Row():
btn = gr.Button(variant="primary",value="提交")
clear_btn = gr.ClearButton(value="清除")
with gr.Column():
outputs=gr.Textbox(lines=1, label="该物质的CHO细胞毒性为:",info="单位:摩尔浓度")
btn.click(predict, inputs=[inputs], outputs=[outputs])
clear_btn.add([inputs,outputs])
gr.Examples(
[["O=C(O)CBr"],["O=CC(Br)(Br)Br"],["IC(Br)Br"]],
[inputs],
label="参考格式"
)
demo.launch()