File size: 2,214 Bytes
b64d09e
 
 
 
 
 
 
fd25dfc
 
 
 
 
b64d09e
 
 
 
fd25dfc
b64d09e
 
 
 
fd25dfc
b64d09e
 
 
fd25dfc
b64d09e
 
 
fd25dfc
b64d09e
 
 
 
 
507cd03
b64d09e
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from transformers import GPT2Tokenizer, GPT2LMHeadModel
import torch
from datasets import load_dataset
import pandas as pd
import re

class ChatBot:
    def __init__(self,dir,tokenizer,model,device):
        self.directory = dir
        self.tokenizer = tokenizer
        self.model = model
        self.device = device
        self.model.to(self.device)

    def generate_response(self, history):
        combined_prompt = ""

        # self.tokenizer.eos_token_id = '<|endoftext|>'
        if len(history.user) > 7:
            history.user = history.user[-7:]
            history.ai = history.ai[-6:] 

        # Iterate over user and AI messages
        for user_message, ai_message in zip(history.user, history.ai):
            combined_prompt += f"<user> {user_message}{self.tokenizer.eos_token_id}<AI> {ai_message}{self.tokenizer.eos_token_id}"
       
        # Include the last user message in the prompt for response generation
        if history.user:
            combined_prompt += f"<user> {history.user[-1]}{self.tokenizer.eos_token_id}<AI>"
        
        # Tokenize and generate response
        inputs = self.tokenizer.encode(combined_prompt, return_tensors="pt").to(self.device)
        attention_mask = torch.ones(inputs.shape, device=self.device)
        outputs = self.model.generate(
            inputs,
            max_new_tokens=20,  # Adjust length as needed
            num_beams=5,
            early_stopping=True,
            no_repeat_ngram_size=2,
            temperature=0.7,
            top_k=50,
            top_p=0.95,
            pad_token_id=self.tokenizer.eos_token_id,
            attention_mask=attention_mask,
            repetition_penalty=1.2
        )
        response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
        # response = response.replace(combined_prompt, "").split(".")[0]#.replace("(user 1's name)",'AI').replace("(user 2's name)",'AI').replace("[user 1's name]",'AI').replace('<user>','')
        # print('here:\n', combined_prompt,'\n\n response:\n', response,'\n\n edit-resposne: \n', response.replace(combined_prompt, "").replace('(name)','AI').split(".")[0],'\n\n')
        return response.replace(combined_prompt, "").split(".")[0]