Spaces:
Running
Running
File size: 29,991 Bytes
155f397 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 |
import requests
import aiohttp
import asyncio
import logging
import os
import sys
import time
from typing import List, Dict, Any
from contextlib import asynccontextmanager
from langchain_core.documents import Document
from open_webui.env import SRC_LOG_LEVELS, GLOBAL_LOG_LEVEL
logging.basicConfig(stream=sys.stdout, level=GLOBAL_LOG_LEVEL)
log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["RAG"])
class MistralLoader:
"""
Enhanced Mistral OCR loader with both sync and async support.
Loads documents by processing them through the Mistral OCR API.
Performance Optimizations:
- Differentiated timeouts for different operations
- Intelligent retry logic with exponential backoff
- Memory-efficient file streaming for large files
- Connection pooling and keepalive optimization
- Semaphore-based concurrency control for batch processing
- Enhanced error handling with retryable error classification
"""
BASE_API_URL = "https://api.mistral.ai/v1"
def __init__(
self,
api_key: str,
file_path: str,
timeout: int = 300, # 5 minutes default
max_retries: int = 3,
enable_debug_logging: bool = False,
):
"""
Initializes the loader with enhanced features.
Args:
api_key: Your Mistral API key.
file_path: The local path to the PDF file to process.
timeout: Request timeout in seconds.
max_retries: Maximum number of retry attempts.
enable_debug_logging: Enable detailed debug logs.
"""
if not api_key:
raise ValueError("API key cannot be empty.")
if not os.path.exists(file_path):
raise FileNotFoundError(f"File not found at {file_path}")
self.api_key = api_key
self.file_path = file_path
self.timeout = timeout
self.max_retries = max_retries
self.debug = enable_debug_logging
# PERFORMANCE OPTIMIZATION: Differentiated timeouts for different operations
# This prevents long-running OCR operations from affecting quick operations
# and improves user experience by failing fast on operations that should be quick
self.upload_timeout = min(
timeout, 120
) # Cap upload at 2 minutes - prevents hanging on large files
self.url_timeout = (
30 # URL requests should be fast - fail quickly if API is slow
)
self.ocr_timeout = (
timeout # OCR can take the full timeout - this is the heavy operation
)
self.cleanup_timeout = (
30 # Cleanup should be quick - don't hang on file deletion
)
# PERFORMANCE OPTIMIZATION: Pre-compute file info to avoid repeated filesystem calls
# This avoids multiple os.path.basename() and os.path.getsize() calls during processing
self.file_name = os.path.basename(file_path)
self.file_size = os.path.getsize(file_path)
# ENHANCEMENT: Added User-Agent for better API tracking and debugging
self.headers = {
"Authorization": f"Bearer {self.api_key}",
"User-Agent": "OpenWebUI-MistralLoader/2.0", # Helps API provider track usage
}
def _debug_log(self, message: str, *args) -> None:
"""
PERFORMANCE OPTIMIZATION: Conditional debug logging for performance.
Only processes debug messages when debug mode is enabled, avoiding
string formatting overhead in production environments.
"""
if self.debug:
log.debug(message, *args)
def _handle_response(self, response: requests.Response) -> Dict[str, Any]:
"""Checks response status and returns JSON content."""
try:
response.raise_for_status() # Raises HTTPError for bad responses (4xx or 5xx)
# Handle potential empty responses for certain successful requests (e.g., DELETE)
if response.status_code == 204 or not response.content:
return {} # Return empty dict if no content
return response.json()
except requests.exceptions.HTTPError as http_err:
log.error(f"HTTP error occurred: {http_err} - Response: {response.text}")
raise
except requests.exceptions.RequestException as req_err:
log.error(f"Request exception occurred: {req_err}")
raise
except ValueError as json_err: # Includes JSONDecodeError
log.error(f"JSON decode error: {json_err} - Response: {response.text}")
raise # Re-raise after logging
async def _handle_response_async(
self, response: aiohttp.ClientResponse
) -> Dict[str, Any]:
"""Async version of response handling with better error info."""
try:
response.raise_for_status()
# Check content type
content_type = response.headers.get("content-type", "")
if "application/json" not in content_type:
if response.status == 204:
return {}
text = await response.text()
raise ValueError(
f"Unexpected content type: {content_type}, body: {text[:200]}..."
)
return await response.json()
except aiohttp.ClientResponseError as e:
error_text = await response.text() if response else "No response"
log.error(f"HTTP {e.status}: {e.message} - Response: {error_text[:500]}")
raise
except aiohttp.ClientError as e:
log.error(f"Client error: {e}")
raise
except Exception as e:
log.error(f"Unexpected error processing response: {e}")
raise
def _is_retryable_error(self, error: Exception) -> bool:
"""
ENHANCEMENT: Intelligent error classification for retry logic.
Determines if an error is retryable based on its type and status code.
This prevents wasting time retrying errors that will never succeed
(like authentication errors) while ensuring transient errors are retried.
Retryable errors:
- Network connection errors (temporary network issues)
- Timeouts (server might be temporarily overloaded)
- Server errors (5xx status codes - server-side issues)
- Rate limiting (429 status - temporary throttling)
Non-retryable errors:
- Authentication errors (401, 403 - won't fix with retry)
- Bad request errors (400 - malformed request)
- Not found errors (404 - resource doesn't exist)
"""
if isinstance(error, requests.exceptions.ConnectionError):
return True # Network issues are usually temporary
if isinstance(error, requests.exceptions.Timeout):
return True # Timeouts might resolve on retry
if isinstance(error, requests.exceptions.HTTPError):
# Only retry on server errors (5xx) or rate limits (429)
if hasattr(error, "response") and error.response is not None:
status_code = error.response.status_code
return status_code >= 500 or status_code == 429
return False
if isinstance(
error, (aiohttp.ClientConnectionError, aiohttp.ServerTimeoutError)
):
return True # Async network/timeout errors are retryable
if isinstance(error, aiohttp.ClientResponseError):
return error.status >= 500 or error.status == 429
return False # All other errors are non-retryable
def _retry_request_sync(self, request_func, *args, **kwargs):
"""
ENHANCEMENT: Synchronous retry logic with intelligent error classification.
Uses exponential backoff with jitter to avoid thundering herd problems.
The wait time increases exponentially but is capped at 30 seconds to
prevent excessive delays. Only retries errors that are likely to succeed
on subsequent attempts.
"""
for attempt in range(self.max_retries):
try:
return request_func(*args, **kwargs)
except Exception as e:
if attempt == self.max_retries - 1 or not self._is_retryable_error(e):
raise
# PERFORMANCE OPTIMIZATION: Exponential backoff with cap
# Prevents overwhelming the server while ensuring reasonable retry delays
wait_time = min((2**attempt) + 0.5, 30) # Cap at 30 seconds
log.warning(
f"Retryable error (attempt {attempt + 1}/{self.max_retries}): {e}. "
f"Retrying in {wait_time}s..."
)
time.sleep(wait_time)
async def _retry_request_async(self, request_func, *args, **kwargs):
"""
ENHANCEMENT: Async retry logic with intelligent error classification.
Async version of retry logic that doesn't block the event loop during
wait periods. Uses the same exponential backoff strategy as sync version.
"""
for attempt in range(self.max_retries):
try:
return await request_func(*args, **kwargs)
except Exception as e:
if attempt == self.max_retries - 1 or not self._is_retryable_error(e):
raise
# PERFORMANCE OPTIMIZATION: Non-blocking exponential backoff
wait_time = min((2**attempt) + 0.5, 30) # Cap at 30 seconds
log.warning(
f"Retryable error (attempt {attempt + 1}/{self.max_retries}): {e}. "
f"Retrying in {wait_time}s..."
)
await asyncio.sleep(wait_time) # Non-blocking wait
def _upload_file(self) -> str:
"""
PERFORMANCE OPTIMIZATION: Enhanced file upload with streaming consideration.
Uploads the file to Mistral for OCR processing (sync version).
Uses context manager for file handling to ensure proper resource cleanup.
Although streaming is not enabled for this endpoint, the file is opened
in a context manager to minimize memory usage duration.
"""
log.info("Uploading file to Mistral API")
url = f"{self.BASE_API_URL}/files"
def upload_request():
# MEMORY OPTIMIZATION: Use context manager to minimize file handle lifetime
# This ensures the file is closed immediately after reading, reducing memory usage
with open(self.file_path, "rb") as f:
files = {"file": (self.file_name, f, "application/pdf")}
data = {"purpose": "ocr"}
# NOTE: stream=False is required for this endpoint
# The Mistral API doesn't support chunked uploads for this endpoint
response = requests.post(
url,
headers=self.headers,
files=files,
data=data,
timeout=self.upload_timeout, # Use specialized upload timeout
stream=False, # Keep as False for this endpoint
)
return self._handle_response(response)
try:
response_data = self._retry_request_sync(upload_request)
file_id = response_data.get("id")
if not file_id:
raise ValueError("File ID not found in upload response.")
log.info(f"File uploaded successfully. File ID: {file_id}")
return file_id
except Exception as e:
log.error(f"Failed to upload file: {e}")
raise
async def _upload_file_async(self, session: aiohttp.ClientSession) -> str:
"""Async file upload with streaming for better memory efficiency."""
url = f"{self.BASE_API_URL}/files"
async def upload_request():
# Create multipart writer for streaming upload
writer = aiohttp.MultipartWriter("form-data")
# Add purpose field
purpose_part = writer.append("ocr")
purpose_part.set_content_disposition("form-data", name="purpose")
# Add file part with streaming
file_part = writer.append_payload(
aiohttp.streams.FilePayload(
self.file_path,
filename=self.file_name,
content_type="application/pdf",
)
)
file_part.set_content_disposition(
"form-data", name="file", filename=self.file_name
)
self._debug_log(
f"Uploading file: {self.file_name} ({self.file_size:,} bytes)"
)
async with session.post(
url,
data=writer,
headers=self.headers,
timeout=aiohttp.ClientTimeout(total=self.upload_timeout),
) as response:
return await self._handle_response_async(response)
response_data = await self._retry_request_async(upload_request)
file_id = response_data.get("id")
if not file_id:
raise ValueError("File ID not found in upload response.")
log.info(f"File uploaded successfully. File ID: {file_id}")
return file_id
def _get_signed_url(self, file_id: str) -> str:
"""Retrieves a temporary signed URL for the uploaded file (sync version)."""
log.info(f"Getting signed URL for file ID: {file_id}")
url = f"{self.BASE_API_URL}/files/{file_id}/url"
params = {"expiry": 1}
signed_url_headers = {**self.headers, "Accept": "application/json"}
def url_request():
response = requests.get(
url, headers=signed_url_headers, params=params, timeout=self.url_timeout
)
return self._handle_response(response)
try:
response_data = self._retry_request_sync(url_request)
signed_url = response_data.get("url")
if not signed_url:
raise ValueError("Signed URL not found in response.")
log.info("Signed URL received.")
return signed_url
except Exception as e:
log.error(f"Failed to get signed URL: {e}")
raise
async def _get_signed_url_async(
self, session: aiohttp.ClientSession, file_id: str
) -> str:
"""Async signed URL retrieval."""
url = f"{self.BASE_API_URL}/files/{file_id}/url"
params = {"expiry": 1}
headers = {**self.headers, "Accept": "application/json"}
async def url_request():
self._debug_log(f"Getting signed URL for file ID: {file_id}")
async with session.get(
url,
headers=headers,
params=params,
timeout=aiohttp.ClientTimeout(total=self.url_timeout),
) as response:
return await self._handle_response_async(response)
response_data = await self._retry_request_async(url_request)
signed_url = response_data.get("url")
if not signed_url:
raise ValueError("Signed URL not found in response.")
self._debug_log("Signed URL received successfully")
return signed_url
def _process_ocr(self, signed_url: str) -> Dict[str, Any]:
"""Sends the signed URL to the OCR endpoint for processing (sync version)."""
log.info("Processing OCR via Mistral API")
url = f"{self.BASE_API_URL}/ocr"
ocr_headers = {
**self.headers,
"Content-Type": "application/json",
"Accept": "application/json",
}
payload = {
"model": "mistral-ocr-latest",
"document": {
"type": "document_url",
"document_url": signed_url,
},
"include_image_base64": False,
}
def ocr_request():
response = requests.post(
url, headers=ocr_headers, json=payload, timeout=self.ocr_timeout
)
return self._handle_response(response)
try:
ocr_response = self._retry_request_sync(ocr_request)
log.info("OCR processing done.")
self._debug_log("OCR response: %s", ocr_response)
return ocr_response
except Exception as e:
log.error(f"Failed during OCR processing: {e}")
raise
async def _process_ocr_async(
self, session: aiohttp.ClientSession, signed_url: str
) -> Dict[str, Any]:
"""Async OCR processing with timing metrics."""
url = f"{self.BASE_API_URL}/ocr"
headers = {
**self.headers,
"Content-Type": "application/json",
"Accept": "application/json",
}
payload = {
"model": "mistral-ocr-latest",
"document": {
"type": "document_url",
"document_url": signed_url,
},
"include_image_base64": False,
}
async def ocr_request():
log.info("Starting OCR processing via Mistral API")
start_time = time.time()
async with session.post(
url,
json=payload,
headers=headers,
timeout=aiohttp.ClientTimeout(total=self.ocr_timeout),
) as response:
ocr_response = await self._handle_response_async(response)
processing_time = time.time() - start_time
log.info(f"OCR processing completed in {processing_time:.2f}s")
return ocr_response
return await self._retry_request_async(ocr_request)
def _delete_file(self, file_id: str) -> None:
"""Deletes the file from Mistral storage (sync version)."""
log.info(f"Deleting uploaded file ID: {file_id}")
url = f"{self.BASE_API_URL}/files/{file_id}"
try:
response = requests.delete(
url, headers=self.headers, timeout=self.cleanup_timeout
)
delete_response = self._handle_response(response)
log.info(f"File deleted successfully: {delete_response}")
except Exception as e:
# Log error but don't necessarily halt execution if deletion fails
log.error(f"Failed to delete file ID {file_id}: {e}")
async def _delete_file_async(
self, session: aiohttp.ClientSession, file_id: str
) -> None:
"""Async file deletion with error tolerance."""
try:
async def delete_request():
self._debug_log(f"Deleting file ID: {file_id}")
async with session.delete(
url=f"{self.BASE_API_URL}/files/{file_id}",
headers=self.headers,
timeout=aiohttp.ClientTimeout(
total=self.cleanup_timeout
), # Shorter timeout for cleanup
) as response:
return await self._handle_response_async(response)
await self._retry_request_async(delete_request)
self._debug_log(f"File {file_id} deleted successfully")
except Exception as e:
# Don't fail the entire process if cleanup fails
log.warning(f"Failed to delete file ID {file_id}: {e}")
@asynccontextmanager
async def _get_session(self):
"""Context manager for HTTP session with optimized settings."""
connector = aiohttp.TCPConnector(
limit=20, # Increased total connection limit for better throughput
limit_per_host=10, # Increased per-host limit for API endpoints
ttl_dns_cache=600, # Longer DNS cache TTL (10 minutes)
use_dns_cache=True,
keepalive_timeout=60, # Increased keepalive for connection reuse
enable_cleanup_closed=True,
force_close=False, # Allow connection reuse
resolver=aiohttp.AsyncResolver(), # Use async DNS resolver
)
timeout = aiohttp.ClientTimeout(
total=self.timeout,
connect=30, # Connection timeout
sock_read=60, # Socket read timeout
)
async with aiohttp.ClientSession(
connector=connector,
timeout=timeout,
headers={"User-Agent": "OpenWebUI-MistralLoader/2.0"},
raise_for_status=False, # We handle status codes manually
) as session:
yield session
def _process_results(self, ocr_response: Dict[str, Any]) -> List[Document]:
"""Process OCR results into Document objects with enhanced metadata and memory efficiency."""
pages_data = ocr_response.get("pages")
if not pages_data:
log.warning("No pages found in OCR response.")
return [
Document(
page_content="No text content found",
metadata={"error": "no_pages", "file_name": self.file_name},
)
]
documents = []
total_pages = len(pages_data)
skipped_pages = 0
# Process pages in a memory-efficient way
for page_data in pages_data:
page_content = page_data.get("markdown")
page_index = page_data.get("index") # API uses 0-based index
if page_content is None or page_index is None:
skipped_pages += 1
self._debug_log(
f"Skipping page due to missing 'markdown' or 'index'. Data keys: {list(page_data.keys())}"
)
continue
# Clean up content efficiently with early exit for empty content
if isinstance(page_content, str):
cleaned_content = page_content.strip()
else:
cleaned_content = str(page_content).strip()
if not cleaned_content:
skipped_pages += 1
self._debug_log(f"Skipping empty page {page_index}")
continue
# Create document with optimized metadata
documents.append(
Document(
page_content=cleaned_content,
metadata={
"page": page_index, # 0-based index from API
"page_label": page_index + 1, # 1-based label for convenience
"total_pages": total_pages,
"file_name": self.file_name,
"file_size": self.file_size,
"processing_engine": "mistral-ocr",
"content_length": len(cleaned_content),
},
)
)
if skipped_pages > 0:
log.info(
f"Processed {len(documents)} pages, skipped {skipped_pages} empty/invalid pages"
)
if not documents:
# Case where pages existed but none had valid markdown/index
log.warning(
"OCR response contained pages, but none had valid content/index."
)
return [
Document(
page_content="No valid text content found in document",
metadata={
"error": "no_valid_pages",
"total_pages": total_pages,
"file_name": self.file_name,
},
)
]
return documents
def load(self) -> List[Document]:
"""
Executes the full OCR workflow: upload, get URL, process OCR, delete file.
Synchronous version for backward compatibility.
Returns:
A list of Document objects, one for each page processed.
"""
file_id = None
start_time = time.time()
try:
# 1. Upload file
file_id = self._upload_file()
# 2. Get Signed URL
signed_url = self._get_signed_url(file_id)
# 3. Process OCR
ocr_response = self._process_ocr(signed_url)
# 4. Process results
documents = self._process_results(ocr_response)
total_time = time.time() - start_time
log.info(
f"Sync OCR workflow completed in {total_time:.2f}s, produced {len(documents)} documents"
)
return documents
except Exception as e:
total_time = time.time() - start_time
log.error(
f"An error occurred during the loading process after {total_time:.2f}s: {e}"
)
# Return an error document on failure
return [
Document(
page_content=f"Error during processing: {e}",
metadata={
"error": "processing_failed",
"file_name": self.file_name,
},
)
]
finally:
# 5. Delete file (attempt even if prior steps failed after upload)
if file_id:
try:
self._delete_file(file_id)
except Exception as del_e:
# Log deletion error, but don't overwrite original error if one occurred
log.error(
f"Cleanup error: Could not delete file ID {file_id}. Reason: {del_e}"
)
async def load_async(self) -> List[Document]:
"""
Asynchronous OCR workflow execution with optimized performance.
Returns:
A list of Document objects, one for each page processed.
"""
file_id = None
start_time = time.time()
try:
async with self._get_session() as session:
# 1. Upload file with streaming
file_id = await self._upload_file_async(session)
# 2. Get signed URL
signed_url = await self._get_signed_url_async(session, file_id)
# 3. Process OCR
ocr_response = await self._process_ocr_async(session, signed_url)
# 4. Process results
documents = self._process_results(ocr_response)
total_time = time.time() - start_time
log.info(
f"Async OCR workflow completed in {total_time:.2f}s, produced {len(documents)} documents"
)
return documents
except Exception as e:
total_time = time.time() - start_time
log.error(f"Async OCR workflow failed after {total_time:.2f}s: {e}")
return [
Document(
page_content=f"Error during OCR processing: {e}",
metadata={
"error": "processing_failed",
"file_name": self.file_name,
},
)
]
finally:
# 5. Cleanup - always attempt file deletion
if file_id:
try:
async with self._get_session() as session:
await self._delete_file_async(session, file_id)
except Exception as cleanup_error:
log.error(f"Cleanup failed for file ID {file_id}: {cleanup_error}")
@staticmethod
async def load_multiple_async(
loaders: List["MistralLoader"],
max_concurrent: int = 5, # Limit concurrent requests
) -> List[List[Document]]:
"""
Process multiple files concurrently with controlled concurrency.
Args:
loaders: List of MistralLoader instances
max_concurrent: Maximum number of concurrent requests
Returns:
List of document lists, one for each loader
"""
if not loaders:
return []
log.info(
f"Starting concurrent processing of {len(loaders)} files with max {max_concurrent} concurrent"
)
start_time = time.time()
# Use semaphore to control concurrency
semaphore = asyncio.Semaphore(max_concurrent)
async def process_with_semaphore(loader: "MistralLoader") -> List[Document]:
async with semaphore:
return await loader.load_async()
# Process all files with controlled concurrency
tasks = [process_with_semaphore(loader) for loader in loaders]
results = await asyncio.gather(*tasks, return_exceptions=True)
# Handle any exceptions in results
processed_results = []
for i, result in enumerate(results):
if isinstance(result, Exception):
log.error(f"File {i} failed: {result}")
processed_results.append(
[
Document(
page_content=f"Error processing file: {result}",
metadata={
"error": "batch_processing_failed",
"file_index": i,
},
)
]
)
else:
processed_results.append(result)
# MONITORING: Log comprehensive batch processing statistics
total_time = time.time() - start_time
total_docs = sum(len(docs) for docs in processed_results)
success_count = sum(
1 for result in results if not isinstance(result, Exception)
)
failure_count = len(results) - success_count
log.info(
f"Batch processing completed in {total_time:.2f}s: "
f"{success_count} files succeeded, {failure_count} files failed, "
f"produced {total_docs} total documents"
)
return processed_results
|