Spaces:
Build error
Build error
import logging | |
import os | |
from typing import Optional, Union | |
import requests | |
import hashlib | |
from concurrent.futures import ThreadPoolExecutor | |
from huggingface_hub import snapshot_download | |
from langchain.retrievers import ContextualCompressionRetriever, EnsembleRetriever | |
from langchain_community.retrievers import BM25Retriever | |
from langchain_core.documents import Document | |
from open_webui.config import VECTOR_DB | |
from open_webui.retrieval.vector.connector import VECTOR_DB_CLIENT | |
from open_webui.models.users import UserModel | |
from open_webui.models.files import Files | |
from open_webui.retrieval.vector.main import GetResult | |
from open_webui.env import ( | |
SRC_LOG_LEVELS, | |
OFFLINE_MODE, | |
ENABLE_FORWARD_USER_INFO_HEADERS, | |
) | |
from open_webui.config import ( | |
RAG_EMBEDDING_QUERY_PREFIX, | |
RAG_EMBEDDING_CONTENT_PREFIX, | |
RAG_EMBEDDING_PREFIX_FIELD_NAME, | |
) | |
log = logging.getLogger(__name__) | |
log.setLevel(SRC_LOG_LEVELS["RAG"]) | |
from typing import Any | |
from langchain_core.callbacks import CallbackManagerForRetrieverRun | |
from langchain_core.retrievers import BaseRetriever | |
class VectorSearchRetriever(BaseRetriever): | |
collection_name: Any | |
embedding_function: Any | |
top_k: int | |
def _get_relevant_documents( | |
self, | |
query: str, | |
*, | |
run_manager: CallbackManagerForRetrieverRun, | |
) -> list[Document]: | |
result = VECTOR_DB_CLIENT.search( | |
collection_name=self.collection_name, | |
vectors=[self.embedding_function(query, RAG_EMBEDDING_QUERY_PREFIX)], | |
limit=self.top_k, | |
) | |
ids = result.ids[0] | |
metadatas = result.metadatas[0] | |
documents = result.documents[0] | |
results = [] | |
for idx in range(len(ids)): | |
results.append( | |
Document( | |
metadata=metadatas[idx], | |
page_content=documents[idx], | |
) | |
) | |
return results | |
def query_doc( | |
collection_name: str, query_embedding: list[float], k: int, user: UserModel = None | |
): | |
try: | |
result = VECTOR_DB_CLIENT.search( | |
collection_name=collection_name, | |
vectors=[query_embedding], | |
limit=k, | |
) | |
if result: | |
log.info(f"query_doc:result {result.ids} {result.metadatas}") | |
return result | |
except Exception as e: | |
log.exception(f"Error querying doc {collection_name} with limit {k}: {e}") | |
raise e | |
def get_doc(collection_name: str, user: UserModel = None): | |
try: | |
result = VECTOR_DB_CLIENT.get(collection_name=collection_name) | |
if result: | |
log.info(f"query_doc:result {result.ids} {result.metadatas}") | |
return result | |
except Exception as e: | |
log.exception(f"Error getting doc {collection_name}: {e}") | |
raise e | |
def query_doc_with_hybrid_search( | |
collection_name: str, | |
collection_result: GetResult, | |
query: str, | |
embedding_function, | |
k: int, | |
reranking_function, | |
k_reranker: int, | |
r: float, | |
) -> dict: | |
try: | |
bm25_retriever = BM25Retriever.from_texts( | |
texts=collection_result.documents[0], | |
metadatas=collection_result.metadatas[0], | |
) | |
bm25_retriever.k = k | |
vector_search_retriever = VectorSearchRetriever( | |
collection_name=collection_name, | |
embedding_function=embedding_function, | |
top_k=k, | |
) | |
ensemble_retriever = EnsembleRetriever( | |
retrievers=[bm25_retriever, vector_search_retriever], weights=[0.5, 0.5] | |
) | |
compressor = RerankCompressor( | |
embedding_function=embedding_function, | |
top_n=k_reranker, | |
reranking_function=reranking_function, | |
r_score=r, | |
) | |
compression_retriever = ContextualCompressionRetriever( | |
base_compressor=compressor, base_retriever=ensemble_retriever | |
) | |
result = compression_retriever.invoke(query) | |
distances = [d.metadata.get("score") for d in result] | |
documents = [d.page_content for d in result] | |
metadatas = [d.metadata for d in result] | |
# retrieve only min(k, k_reranker) items, sort and cut by distance if k < k_reranker | |
if k < k_reranker: | |
sorted_items = sorted( | |
zip(distances, metadatas, documents), key=lambda x: x[0], reverse=True | |
) | |
sorted_items = sorted_items[:k] | |
distances, documents, metadatas = map(list, zip(*sorted_items)) | |
result = { | |
"distances": [distances], | |
"documents": [documents], | |
"metadatas": [metadatas], | |
} | |
log.info( | |
"query_doc_with_hybrid_search:result " | |
+ f'{result["metadatas"]} {result["distances"]}' | |
) | |
return result | |
except Exception as e: | |
raise e | |
def merge_get_results(get_results: list[dict]) -> dict: | |
# Initialize lists to store combined data | |
combined_documents = [] | |
combined_metadatas = [] | |
combined_ids = [] | |
for data in get_results: | |
combined_documents.extend(data["documents"][0]) | |
combined_metadatas.extend(data["metadatas"][0]) | |
combined_ids.extend(data["ids"][0]) | |
# Create the output dictionary | |
result = { | |
"documents": [combined_documents], | |
"metadatas": [combined_metadatas], | |
"ids": [combined_ids], | |
} | |
return result | |
def merge_and_sort_query_results(query_results: list[dict], k: int) -> dict: | |
# Initialize lists to store combined data | |
combined = dict() # To store documents with unique document hashes | |
for data in query_results: | |
distances = data["distances"][0] | |
documents = data["documents"][0] | |
metadatas = data["metadatas"][0] | |
for distance, document, metadata in zip(distances, documents, metadatas): | |
if isinstance(document, str): | |
doc_hash = hashlib.md5( | |
document.encode() | |
).hexdigest() # Compute a hash for uniqueness | |
if doc_hash not in combined.keys(): | |
combined[doc_hash] = (distance, document, metadata) | |
continue # if doc is new, no further comparison is needed | |
# if doc is alredy in, but new distance is better, update | |
if distance > combined[doc_hash][0]: | |
combined[doc_hash] = (distance, document, metadata) | |
combined = list(combined.values()) | |
# Sort the list based on distances | |
combined.sort(key=lambda x: x[0], reverse=True) | |
# Slice to keep only the top k elements | |
sorted_distances, sorted_documents, sorted_metadatas = ( | |
zip(*combined[:k]) if combined else ([], [], []) | |
) | |
# Create and return the output dictionary | |
return { | |
"distances": [list(sorted_distances)], | |
"documents": [list(sorted_documents)], | |
"metadatas": [list(sorted_metadatas)], | |
} | |
def get_all_items_from_collections(collection_names: list[str]) -> dict: | |
results = [] | |
for collection_name in collection_names: | |
if collection_name: | |
try: | |
result = get_doc(collection_name=collection_name) | |
if result is not None: | |
results.append(result.model_dump()) | |
except Exception as e: | |
log.exception(f"Error when querying the collection: {e}") | |
else: | |
pass | |
return merge_get_results(results) | |
def query_collection( | |
collection_names: list[str], | |
queries: list[str], | |
embedding_function, | |
k: int, | |
) -> dict: | |
results = [] | |
for query in queries: | |
query_embedding = embedding_function(query, prefix=RAG_EMBEDDING_QUERY_PREFIX) | |
for collection_name in collection_names: | |
if collection_name: | |
try: | |
result = query_doc( | |
collection_name=collection_name, | |
k=k, | |
query_embedding=query_embedding, | |
) | |
if result is not None: | |
results.append(result.model_dump()) | |
except Exception as e: | |
log.exception(f"Error when querying the collection: {e}") | |
else: | |
pass | |
return merge_and_sort_query_results(results, k=k) | |
def query_collection_with_hybrid_search( | |
collection_names: list[str], | |
queries: list[str], | |
embedding_function, | |
k: int, | |
reranking_function, | |
k_reranker: int, | |
r: float, | |
) -> dict: | |
results = [] | |
error = False | |
# Fetch collection data once per collection sequentially | |
# Avoid fetching the same data multiple times later | |
collection_results = {} | |
for collection_name in collection_names: | |
try: | |
collection_results[collection_name] = VECTOR_DB_CLIENT.get( | |
collection_name=collection_name | |
) | |
except Exception as e: | |
log.exception(f"Failed to fetch collection {collection_name}: {e}") | |
collection_results[collection_name] = None | |
log.info( | |
f"Starting hybrid search for {len(queries)} queries in {len(collection_names)} collections..." | |
) | |
def process_query(collection_name, query): | |
try: | |
result = query_doc_with_hybrid_search( | |
collection_name=collection_name, | |
collection_result=collection_results[collection_name], | |
query=query, | |
embedding_function=embedding_function, | |
k=k, | |
reranking_function=reranking_function, | |
k_reranker=k_reranker, | |
r=r, | |
) | |
return result, None | |
except Exception as e: | |
log.exception(f"Error when querying the collection with hybrid_search: {e}") | |
return None, e | |
tasks = [ | |
(collection_name, query) | |
for collection_name in collection_names | |
for query in queries | |
] | |
with ThreadPoolExecutor() as executor: | |
future_results = [executor.submit(process_query, cn, q) for cn, q in tasks] | |
task_results = [future.result() for future in future_results] | |
for result, err in task_results: | |
if err is not None: | |
error = True | |
elif result is not None: | |
results.append(result) | |
if error and not results: | |
raise Exception( | |
"Hybrid search failed for all collections. Using Non-hybrid search as fallback." | |
) | |
return merge_and_sort_query_results(results, k=k) | |
def get_embedding_function( | |
embedding_engine, | |
embedding_model, | |
embedding_function, | |
url, | |
key, | |
embedding_batch_size, | |
): | |
if embedding_engine == "": | |
return lambda query, prefix=None, user=None: embedding_function.encode( | |
query, prompt=prefix if prefix else None | |
).tolist() | |
elif embedding_engine in ["ollama", "openai"]: | |
func = lambda query, prefix=None, user=None: generate_embeddings( | |
engine=embedding_engine, | |
model=embedding_model, | |
text=query, | |
prefix=prefix, | |
url=url, | |
key=key, | |
user=user, | |
) | |
def generate_multiple(query, prefix, user, func): | |
if isinstance(query, list): | |
embeddings = [] | |
for i in range(0, len(query), embedding_batch_size): | |
embeddings.extend( | |
func( | |
query[i : i + embedding_batch_size], | |
prefix=prefix, | |
user=user, | |
) | |
) | |
return embeddings | |
else: | |
return func(query, prefix, user) | |
return lambda query, prefix=None, user=None: generate_multiple( | |
query, prefix, user, func | |
) | |
else: | |
raise ValueError(f"Unknown embedding engine: {embedding_engine}") | |
def get_sources_from_files( | |
request, | |
files, | |
queries, | |
embedding_function, | |
k, | |
reranking_function, | |
k_reranker, | |
r, | |
hybrid_search, | |
full_context=False, | |
): | |
log.debug( | |
f"files: {files} {queries} {embedding_function} {reranking_function} {full_context}" | |
) | |
extracted_collections = [] | |
relevant_contexts = [] | |
for file in files: | |
context = None | |
if file.get("docs"): | |
# BYPASS_WEB_SEARCH_EMBEDDING_AND_RETRIEVAL | |
context = { | |
"documents": [[doc.get("content") for doc in file.get("docs")]], | |
"metadatas": [[doc.get("metadata") for doc in file.get("docs")]], | |
} | |
elif file.get("context") == "full": | |
# Manual Full Mode Toggle | |
context = { | |
"documents": [[file.get("file").get("data", {}).get("content")]], | |
"metadatas": [[{"file_id": file.get("id"), "name": file.get("name")}]], | |
} | |
elif ( | |
file.get("type") != "web_search" | |
and request.app.state.config.BYPASS_EMBEDDING_AND_RETRIEVAL | |
): | |
# BYPASS_EMBEDDING_AND_RETRIEVAL | |
if file.get("type") == "collection": | |
file_ids = file.get("data", {}).get("file_ids", []) | |
documents = [] | |
metadatas = [] | |
for file_id in file_ids: | |
file_object = Files.get_file_by_id(file_id) | |
if file_object: | |
documents.append(file_object.data.get("content", "")) | |
metadatas.append( | |
{ | |
"file_id": file_id, | |
"name": file_object.filename, | |
"source": file_object.filename, | |
} | |
) | |
context = { | |
"documents": [documents], | |
"metadatas": [metadatas], | |
} | |
elif file.get("id"): | |
file_object = Files.get_file_by_id(file.get("id")) | |
if file_object: | |
context = { | |
"documents": [[file_object.data.get("content", "")]], | |
"metadatas": [ | |
[ | |
{ | |
"file_id": file.get("id"), | |
"name": file_object.filename, | |
"source": file_object.filename, | |
} | |
] | |
], | |
} | |
elif file.get("file").get("data"): | |
context = { | |
"documents": [[file.get("file").get("data", {}).get("content")]], | |
"metadatas": [ | |
[file.get("file").get("data", {}).get("metadata", {})] | |
], | |
} | |
else: | |
collection_names = [] | |
if file.get("type") == "collection": | |
if file.get("legacy"): | |
collection_names = file.get("collection_names", []) | |
else: | |
collection_names.append(file["id"]) | |
elif file.get("collection_name"): | |
collection_names.append(file["collection_name"]) | |
elif file.get("id"): | |
if file.get("legacy"): | |
collection_names.append(f"{file['id']}") | |
else: | |
collection_names.append(f"file-{file['id']}") | |
collection_names = set(collection_names).difference(extracted_collections) | |
if not collection_names: | |
log.debug(f"skipping {file} as it has already been extracted") | |
continue | |
if full_context: | |
try: | |
context = get_all_items_from_collections(collection_names) | |
except Exception as e: | |
log.exception(e) | |
else: | |
try: | |
context = None | |
if file.get("type") == "text": | |
context = file["content"] | |
else: | |
if hybrid_search: | |
try: | |
context = query_collection_with_hybrid_search( | |
collection_names=collection_names, | |
queries=queries, | |
embedding_function=embedding_function, | |
k=k, | |
reranking_function=reranking_function, | |
k_reranker=k_reranker, | |
r=r, | |
) | |
except Exception as e: | |
log.debug( | |
"Error when using hybrid search, using" | |
" non hybrid search as fallback." | |
) | |
if (not hybrid_search) or (context is None): | |
context = query_collection( | |
collection_names=collection_names, | |
queries=queries, | |
embedding_function=embedding_function, | |
k=k, | |
) | |
except Exception as e: | |
log.exception(e) | |
extracted_collections.extend(collection_names) | |
if context: | |
if "data" in file: | |
del file["data"] | |
relevant_contexts.append({**context, "file": file}) | |
sources = [] | |
for context in relevant_contexts: | |
try: | |
if "documents" in context: | |
if "metadatas" in context: | |
source = { | |
"source": context["file"], | |
"document": context["documents"][0], | |
"metadata": context["metadatas"][0], | |
} | |
if "distances" in context and context["distances"]: | |
source["distances"] = context["distances"][0] | |
sources.append(source) | |
except Exception as e: | |
log.exception(e) | |
return sources | |
def get_model_path(model: str, update_model: bool = False): | |
# Construct huggingface_hub kwargs with local_files_only to return the snapshot path | |
cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME") | |
local_files_only = not update_model | |
if OFFLINE_MODE: | |
local_files_only = True | |
snapshot_kwargs = { | |
"cache_dir": cache_dir, | |
"local_files_only": local_files_only, | |
} | |
log.debug(f"model: {model}") | |
log.debug(f"snapshot_kwargs: {snapshot_kwargs}") | |
# Inspiration from upstream sentence_transformers | |
if ( | |
os.path.exists(model) | |
or ("\\" in model or model.count("/") > 1) | |
and local_files_only | |
): | |
# If fully qualified path exists, return input, else set repo_id | |
return model | |
elif "/" not in model: | |
# Set valid repo_id for model short-name | |
model = "sentence-transformers" + "/" + model | |
snapshot_kwargs["repo_id"] = model | |
# Attempt to query the huggingface_hub library to determine the local path and/or to update | |
try: | |
model_repo_path = snapshot_download(**snapshot_kwargs) | |
log.debug(f"model_repo_path: {model_repo_path}") | |
return model_repo_path | |
except Exception as e: | |
log.exception(f"Cannot determine model snapshot path: {e}") | |
return model | |
def generate_openai_batch_embeddings( | |
model: str, | |
texts: list[str], | |
url: str = "https://api.openai.com/v1", | |
key: str = "", | |
prefix: str = None, | |
user: UserModel = None, | |
) -> Optional[list[list[float]]]: | |
try: | |
json_data = {"input": texts, "model": model} | |
if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME, str) and isinstance(prefix, str): | |
json_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix | |
r = requests.post( | |
f"{url}/embeddings", | |
headers={ | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {key}", | |
**( | |
{ | |
"X-OpenWebUI-User-Name": user.name, | |
"X-OpenWebUI-User-Id": user.id, | |
"X-OpenWebUI-User-Email": user.email, | |
"X-OpenWebUI-User-Role": user.role, | |
} | |
if ENABLE_FORWARD_USER_INFO_HEADERS and user | |
else {} | |
), | |
}, | |
json=json_data, | |
) | |
r.raise_for_status() | |
data = r.json() | |
if "data" in data: | |
return [elem["embedding"] for elem in data["data"]] | |
else: | |
raise "Something went wrong :/" | |
except Exception as e: | |
log.exception(f"Error generating openai batch embeddings: {e}") | |
return None | |
def generate_ollama_batch_embeddings( | |
model: str, | |
texts: list[str], | |
url: str, | |
key: str = "", | |
prefix: str = None, | |
user: UserModel = None, | |
) -> Optional[list[list[float]]]: | |
try: | |
json_data = {"input": texts, "model": model} | |
if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME, str) and isinstance(prefix, str): | |
json_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix | |
r = requests.post( | |
f"{url}/api/embed", | |
headers={ | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {key}", | |
**( | |
{ | |
"X-OpenWebUI-User-Name": user.name, | |
"X-OpenWebUI-User-Id": user.id, | |
"X-OpenWebUI-User-Email": user.email, | |
"X-OpenWebUI-User-Role": user.role, | |
} | |
if ENABLE_FORWARD_USER_INFO_HEADERS | |
else {} | |
), | |
}, | |
json=json_data, | |
) | |
r.raise_for_status() | |
data = r.json() | |
if "embeddings" in data: | |
return data["embeddings"] | |
else: | |
raise "Something went wrong :/" | |
except Exception as e: | |
log.exception(f"Error generating ollama batch embeddings: {e}") | |
return None | |
def generate_embeddings( | |
engine: str, | |
model: str, | |
text: Union[str, list[str]], | |
prefix: Union[str, None] = None, | |
**kwargs, | |
): | |
url = kwargs.get("url", "") | |
key = kwargs.get("key", "") | |
user = kwargs.get("user") | |
if prefix is not None and RAG_EMBEDDING_PREFIX_FIELD_NAME is None: | |
if isinstance(text, list): | |
text = [f"{prefix}{text_element}" for text_element in text] | |
else: | |
text = f"{prefix}{text}" | |
if engine == "ollama": | |
if isinstance(text, list): | |
embeddings = generate_ollama_batch_embeddings( | |
**{ | |
"model": model, | |
"texts": text, | |
"url": url, | |
"key": key, | |
"prefix": prefix, | |
"user": user, | |
} | |
) | |
else: | |
embeddings = generate_ollama_batch_embeddings( | |
**{ | |
"model": model, | |
"texts": [text], | |
"url": url, | |
"key": key, | |
"prefix": prefix, | |
"user": user, | |
} | |
) | |
return embeddings[0] if isinstance(text, str) else embeddings | |
elif engine == "openai": | |
if isinstance(text, list): | |
embeddings = generate_openai_batch_embeddings( | |
model, text, url, key, prefix, user | |
) | |
else: | |
embeddings = generate_openai_batch_embeddings( | |
model, [text], url, key, prefix, user | |
) | |
return embeddings[0] if isinstance(text, str) else embeddings | |
import operator | |
from typing import Optional, Sequence | |
from langchain_core.callbacks import Callbacks | |
from langchain_core.documents import BaseDocumentCompressor, Document | |
class RerankCompressor(BaseDocumentCompressor): | |
embedding_function: Any | |
top_n: int | |
reranking_function: Any | |
r_score: float | |
class Config: | |
extra = "forbid" | |
arbitrary_types_allowed = True | |
def compress_documents( | |
self, | |
documents: Sequence[Document], | |
query: str, | |
callbacks: Optional[Callbacks] = None, | |
) -> Sequence[Document]: | |
reranking = self.reranking_function is not None | |
if reranking: | |
scores = self.reranking_function.predict( | |
[(query, doc.page_content) for doc in documents] | |
) | |
else: | |
from sentence_transformers import util | |
query_embedding = self.embedding_function(query, RAG_EMBEDDING_QUERY_PREFIX) | |
document_embedding = self.embedding_function( | |
[doc.page_content for doc in documents], RAG_EMBEDDING_CONTENT_PREFIX | |
) | |
scores = util.cos_sim(query_embedding, document_embedding)[0] | |
docs_with_scores = list(zip(documents, scores.tolist())) | |
if self.r_score: | |
docs_with_scores = [ | |
(d, s) for d, s in docs_with_scores if s >= self.r_score | |
] | |
result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True) | |
final_results = [] | |
for doc, doc_score in result[: self.top_n]: | |
metadata = doc.metadata | |
metadata["score"] = doc_score | |
doc = Document( | |
page_content=doc.page_content, | |
metadata=metadata, | |
) | |
final_results.append(doc) | |
return final_results | |