ardavey's picture
Update app.py
3d4f830 verified
import gradio as gr
from transformers import pipeline, AutoTokenizer
# Load the text classification model
classifier = pipeline('text-classification', model='ardavey/bert-base-ai-generated-text')
# Load the tokenizer to handle text preprocessing
tokenizer = AutoTokenizer.from_pretrained('ardavey/bert-base-ai-generated-text')
# Define a function to truncate or split the input text
def preprocess_long_text(text, tokenizer, max_length=512):
# Tokenize the text
tokens = tokenizer.encode(text, add_special_tokens=True)
# Split into chunks of max_length
chunks = [tokens[i:i + max_length] for i in range(0, len(tokens), max_length)]
# Decode back to text
return [tokenizer.decode(chunk, skip_special_tokens=True) for chunk in chunks]
# Define a function for text classification
def classify_text(text):
# Preprocess the text for long input
chunks = preprocess_long_text(text, tokenizer)
# Make predictions for each chunk
predictions = [classifier(chunk)[0] for chunk in chunks]
# Aggregate results (you can customize this logic)
ai_scores = [pred['score'] for pred in predictions if pred['label'] == 'LABEL_1']
human_scores = [pred['score'] for pred in predictions if pred['label'] == 'LABEL_0']
# Determine the overall prediction
if sum(ai_scores) > sum(human_scores):
label = "AI Generated Text"
score = sum(ai_scores) / len(ai_scores)
else:
label = "Human Generated Text"
score = sum(human_scores) / len(human_scores)
return f"Prediction: {label}, Average Score: {score:.4f}"
# Create a Gradio interface
interface = gr.Interface(
fn=classify_text,
inputs=gr.Textbox(lines=5, placeholder="Enter your text here..."),
outputs="text",
title="AI Generated Text Detector",
description="Enter a text to check whether the content is written by AI or Human."
)
# Launch the Gradio app
interface.launch()