Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import pipeline, AutoTokenizer | |
# Load the text classification model | |
classifier = pipeline('text-classification', model='ardavey/bert-base-ai-generated-text') | |
# Load the tokenizer to handle text preprocessing | |
tokenizer = AutoTokenizer.from_pretrained('ardavey/bert-base-ai-generated-text') | |
# Define a function to truncate or split the input text | |
def preprocess_long_text(text, tokenizer, max_length=512): | |
# Tokenize the text | |
tokens = tokenizer.encode(text, add_special_tokens=True) | |
# Split into chunks of max_length | |
chunks = [tokens[i:i + max_length] for i in range(0, len(tokens), max_length)] | |
# Decode back to text | |
return [tokenizer.decode(chunk, skip_special_tokens=True) for chunk in chunks] | |
# Define a function for text classification | |
def classify_text(text): | |
# Preprocess the text for long input | |
chunks = preprocess_long_text(text, tokenizer) | |
# Make predictions for each chunk | |
predictions = [classifier(chunk)[0] for chunk in chunks] | |
# Aggregate results (you can customize this logic) | |
ai_scores = [pred['score'] for pred in predictions if pred['label'] == 'LABEL_1'] | |
human_scores = [pred['score'] for pred in predictions if pred['label'] == 'LABEL_0'] | |
# Determine the overall prediction | |
if sum(ai_scores) > sum(human_scores): | |
label = "AI Generated Text" | |
score = sum(ai_scores) / len(ai_scores) | |
else: | |
label = "Human Generated Text" | |
score = sum(human_scores) / len(human_scores) | |
return f"Prediction: {label}, Average Score: {score:.4f}" | |
# Create a Gradio interface | |
interface = gr.Interface( | |
fn=classify_text, | |
inputs=gr.Textbox(lines=5, placeholder="Enter your text here..."), | |
outputs="text", | |
title="AI Generated Text Detector", | |
description="Enter a text to check whether the content is written by AI or Human." | |
) | |
# Launch the Gradio app | |
interface.launch() |