File size: 805 Bytes
369475e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
import gradio as gr
from transformers import pipeline
# Load the text classification model
classifier = pipeline('text-classification', model='ardavey/bert-large-depression-classification-model')
# Define a function for text classification
def classify_text(text):
predictions = classifier([text])
label = 'Depressed' if predictions[0]['label'] == 'LABEL_1' else 'Not Depressed'
score = predictions[0]['score']
return f"Prediction: {label}, Score: {score:.4f}"
# Create a Gradio interface
interface = gr.Interface(
fn=classify_text,
inputs=gr.Textbox(lines=5, placeholder="Enter your text here..."),
outputs="text",
title="Depression Text Classifier",
description="Enter a text sample to check for signs of depression."
)
# Launch the Gradio app
interface.launch()
|