Spaces:
Sleeping
Sleeping
File size: 6,129 Bytes
36fd81e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
from fastapi import FastAPI, HTTPException, Query
from fastapi.responses import StreamingResponse
import os
from os import environ as env
import torch
import time
import nltk
import io
import base64
import torchaudio
from fastapi.responses import JSONResponse
from app.inference import inference, LFinference, compute_style
import numpy as np
nltk.download('punkt')
nltk.download('punkt_tab')
app = FastAPI()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
@app.get("/")
async def read_root():
#return {"details": f"Hello! This is {env['SECRET_API_KEY']} environment"}
#return {"details": f"Hello Stream!"}
#return {"details": f"Hello Stream! This is {env['API_KEY_SECRET']} environment running OK!"}
return {"details": "Environment is running OK!"}
@app.post("/synthesize/")
async def synthesize(
text: str,
return_base64: bool = True,
###################################################
diffusion_steps: int = Query(5, ge=5, le=200),
embedding_scale: float = Query(1.0, ge=1.0, le=5.0)
###################################################
):
try:
start = time.time()
noise = torch.randn(1, 1, 256).to(device)
wav = inference(text, noise, diffusion_steps=diffusion_steps, embedding_scale=embedding_scale)
rtf = (time.time() - start) / (len(wav) / 24000)
if return_base64:
audio_buffer = io.BytesIO()
torchaudio.save(audio_buffer, torch.tensor(wav).unsqueeze(0), 24000, format="wav")
audio_buffer.seek(0)
audio_base64 = base64.b64encode(audio_buffer.read()).decode('utf-8')
return JSONResponse(content={"RTF": rtf, "audio_base64": audio_base64})
else:
return JSONResponse(content={"RTF": rtf, "audio": wav.tolist()})
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/synthesize_longform_streaming/")
async def synthesize_longform(
passage: str,
return_base64: bool = False,
###################################################
alpha: float = Query(0.7, ge=0.0, le=1.0),
diffusion_steps: int = Query(10, ge=5, le=200),
embedding_scale: float = Query(1.5, ge=1.0, le=5.0)
###################################################
):
try:
sentences = passage.split('.') # simple split
wavs = []
s_prev = None
start = time.time()
for text in sentences:
if text.strip() == "":
continue
text += '.' # add it back
noise = torch.randn(1, 1, 256).to(device) # Generate noise
wav, s_prev = LFinference(text, s_prev, noise, alpha=0.7,
diffusion_steps=diffusion_steps,
embedding_scale=embedding_scale)
wavs.append(wav)
final_wav = np.concatenate(wavs) # Concatenate all wavs
rtf = (time.time() - start) / (len(final_wav) / 24000)
audio_buffer = io.BytesIO()
torchaudio.save(audio_buffer, torch.tensor(final_wav).unsqueeze(0), 24000, format="wav")
audio_buffer.seek(0)
if return_base64:
audio_base64 = base64.b64encode(audio_buffer.read()).decode('utf-8')
return JSONResponse(content={"RTF": rtf, "audio_base64": audio_base64})
else:
#return JSONResponse(content={"RTF": rtf, "audio": final_wav.tolist()})
return StreamingResponse(audio_buffer, media_type="audio/wav")
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/synthesize_with_emotion/")
async def synthesize_with_emotion(
texts: dict,
return_base64: bool = True,
###################################################
diffusion_steps: int = Query(100, ge=5, le=200),
embedding_scale: float = Query(5.0, ge=1.0, le=5.0)
###################################################
):
try:
results = []
for emotion, text in texts.items():
noise = torch.randn(1, 1, 256).to(device)
wav = inference(text, noise, diffusion_steps=diffusion_steps,
embedding_scale=embedding_scale)
if return_base64:
audio_buffer = io.BytesIO()
torchaudio.save(audio_buffer, torch.tensor(wav).unsqueeze(0), 24000, format="wav")
audio_buffer.seek(0)
audio_base64 = base64.b64encode(audio_buffer.read()).decode('utf-8')
results.append({
"emotion": emotion,
"audio_base64": audio_base64
})
else:
results.append({
"emotion": emotion,
"audio": wav.tolist()
})
return JSONResponse(content={"results": results})
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/synthesize_streaming_audio/")
async def synthesize_streaming_audio(
text: str,
return_base64: bool = False,
###################################################
diffusion_steps: int = Query(5, ge=5, le=200),
embedding_scale: float = Query(1.0, ge=1.0, le=5.0)
###################################################
):
try:
start = time.time()
noise = torch.randn(1, 1, 256).to(device)
wav = inference(text, noise, diffusion_steps=diffusion_steps, embedding_scale=embedding_scale)
rtf = (time.time() - start) / (len(wav) / 24000)
audio_buffer = io.BytesIO()
torchaudio.save(audio_buffer, torch.tensor(wav).unsqueeze(0), 24000, format="wav")
audio_buffer.seek(0)
if return_base64:
audio_base64 = base64.b64encode(audio_buffer.read()).decode('utf-8')
return JSONResponse(content={"RTF": rtf, "audio_base64": audio_base64})
else:
return StreamingResponse(audio_buffer, media_type="audio/wav")
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
|