File size: 3,759 Bytes
36821d3
 
 
c9bd449
d2e7f91
 
c9bd449
 
 
1853f75
dff7018
36821d3
 
 
dff7018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaaeb76
6199610
36821d3
 
d3fc1a4
aa23dc4
d3fc1a4
aa23dc4
d3fc1a4
aa23dc4
d3fc1a4
aa23dc4
36821d3
dff7018
607292d
36821d3
dff7018
 
 
78f9744
dff7018
36821d3
 
6199610
a4aa9e7
 
 
78f9744
6199610
36821d3
 
 
d3fc1a4
36821d3
aaaeb76
21cc5dc
778c655
21cc5dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36821d3
 
 
 
 
 
dff7018
36821d3
 
dff7018
607292d
36821d3
21cc5dc
 
36821d3
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import json

import gradio as gr
from distilabel.llms import InferenceEndpointsLLM
from distilabel.steps.tasks.argillalabeller import ArgillaLabeller

llm = InferenceEndpointsLLM(
    model_id="meta-llama/Meta-Llama-3.1-8B-Instruct",
    tokenizer_id="meta-llama/Meta-Llama-3.1-8B-Instruct",
    generation_kwargs={"max_new_tokens": 1000},
)
task = ArgillaLabeller(llm=llm)
task.load()


def load_examples():
    with open("examples.json", "r") as f:
        return json.load(f)


# Create Gradio examples
examples = load_examples()


def process_fields(fields):
    if isinstance(fields, str):
        fields = json.loads(fields)
    if isinstance(fields, dict):
        fields = [fields]
    return [field if isinstance(field, dict) else json.loads(field) for field in fields]


def process_records_gradio(records, fields, question, example_records=None):
    try:
        # Convert string inputs to dictionaries
        if isinstance(records, str) and records:
            records = json.loads(records)
        if isinstance(example_records, str) and example_records:
            example_records = json.loads(example_records)
        if isinstance(fields, str) and fields:
            fields = json.loads(fields)
        if isinstance(question, str) and question:
            question = json.loads(question)

        if not fields and not question:
            raise Exception("Error: Either fields or question must be provided")

        runtime_parameters = {"fields": fields, "question": question}
        if example_records:
            runtime_parameters["example_records"] = example_records

        task.set_runtime_parameters(runtime_parameters)

        results = []
        output = task.process(inputs=[{"record": record} for record in records])
        output = next(output)
        for idx in range(len(records)):
            entry = output[idx]
            if entry["suggestions"]:
                results.append(entry["suggestions"])

        return json.dumps({"results": results}, indent=2)
    except Exception as e:
        raise gr.Error(f"Error: {str(e)}")


description = """
An example workflow for JSON payload.

```python
import json
import os
from gradio_client import Client

import argilla as rg

# Initialize Argilla client
client = rg.Argilla(
    api_key=os.environ["ARGILLA_API_KEY"], api_url=os.environ["ARGILLA_API_URL"]
)

# Load the dataset
dataset = client.datasets(name="my_dataset", workspace="my_workspace")

# Prepare example data
example_field = dataset.settings.fields["my_input_field"].serialize()
example_question = dataset.settings.questions["my_question_to_predict"].serialize()

payload = {
    "records": [next(dataset.records()).to_dict()],
    "fields": [example_field],
    "question": example_question,
}

# Use gradio client to process the data
client = Client("davidberenstein1957/distilabel-argilla-labeller")

result = client.predict(
    records=json.dumps(payload["records"]),
    example_records=json.dumps(payload["example_records"]),
    fields=json.dumps(payload["fields"]),
    question=json.dumps(payload["question"]),
    api_name="/predict"
)

```
"""

interface = gr.Interface(
    fn=process_records_gradio,
    inputs=[
        gr.Code(label="Records (JSON)", language="json", lines=5),
        gr.Code(label="Example Records (JSON, optional)", language="json", lines=5),
        gr.Code(label="Fields (JSON, optional)", language="json"),
        gr.Code(label="Question (JSON, optional)", language="json"),
    ],
    examples=examples,
    cache_examples=True,
    outputs=gr.Code(label="Suggestions", language="json", lines=10),
    title="Distilabel - ArgillaLabeller - Record Processing Interface",
    description=description,
)

if __name__ == "__main__":
    interface.launch()