Spaces:
Build error
Build error
import json | |
import spaces | |
import gradio as gr | |
import torch | |
from distilabel.llms import LlamaCppLLM | |
from distilabel.steps.tasks.argillalabeller import ArgillaLabeller | |
file_path = os.path.join(os.path.dirname(__file__), "qwen2-0_5b-instruct-fp16.gguf") | |
download_url = "https://huggingface.co/Qwen/Qwen2-0.5B-Instruct-GGUF/resolve/main/qwen2-0_5b-instruct-fp16.gguf?download=true" | |
if not os.path.exists(file_path): | |
import requests | |
import tqdm | |
response = requests.get(download_url, stream=True) | |
total_length = int(response.headers.get("content-length")) | |
with open(file_path, "wb") as f: | |
for chunk in tqdm.tqdm( | |
response.iter_content(chunk_size=1024), | |
total=total_length, | |
unit="KB", | |
unit_scale=True, | |
): | |
f.write(chunk) | |
llm = LlamaCppLLM( | |
model_path=file_path, | |
n_gpu_layers=-1, | |
n_ctx=1024 * 4, | |
) | |
task = ArgillaLabeller(llm=llm) | |
task.load() | |
def load_examples(): | |
with open("examples.json", "r") as f: | |
return json.load(f) | |
# Create Gradio examples | |
examples = load_examples() | |
def process_fields(fields): | |
if isinstance(fields, str): | |
fields = json.loads(fields) | |
if isinstance(fields, dict): | |
fields = [fields] | |
return [field if isinstance(field, dict) else json.loads(field) for field in fields] | |
def process_records_gradio(records, example_records, fields, question): | |
try: | |
# Convert string inputs to dictionaries | |
records = json.loads(records) | |
example_records = json.loads(example_records) if example_records else None | |
fields = process_fields(fields) if fields else None | |
question = json.loads(question) if question else None | |
print(fields) | |
print(question) | |
print(example_records) | |
if not fields and not question: | |
return "Error: Either fields or question must be provided" | |
runtime_parameters = {"fields": fields, "question": question} | |
if example_records: | |
runtime_parameters["example_records"] = example_records | |
print(runtime_parameters) | |
task.set_runtime_parameters(runtime_parameters) | |
results = [] | |
for record in records: | |
output = next(task.process(inputs=[{"records": record}])) | |
results.append(output[0]["suggestions"]) | |
return json.dumps({"results": results}, indent=2) | |
except Exception as e: | |
return f"Error: {str(e)}" | |
interface = gr.Interface( | |
fn=process_records_gradio, | |
inputs=[ | |
gr.Code(label="Records (JSON)", language="json", lines=5), | |
gr.Code(label="Example Records (JSON, optional)", language="json", lines=5), | |
gr.Code(label="Fields (JSON, optional)", language="json"), | |
gr.Code(label="Question (JSON, optional)", language="json"), | |
], | |
examples=examples, | |
outputs=gr.Code(label="Suggestions", language="json", lines=10), | |
title="Record Processing Interface", | |
description="Enter JSON data for `rg.Record.to_dict()`, `List[rg.Record.to_dict()]`, `List[Field].serialize()`, or `List[rg.Question.serialize()]` At least one of fields or question must be provided.", | |
) | |
if __name__ == "__main__": | |
interface.launch() | |