import json import gradio as gr from distilabel.llms import InferenceEndpointsLLM from distilabel.steps.tasks.argillalabeller import ArgillaLabeller llm = InferenceEndpointsLLM( model_id="meta-llama/Meta-Llama-3.1-8B-Instruct", tokenizer_id="meta-llama/Meta-Llama-3.1-8B-Instruct", generation_kwargs={"max_new_tokens": 1000}, ) task = ArgillaLabeller(llm=llm) task.load() def load_examples(): with open("examples.json", "r") as f: return json.load(f) # Create Gradio examples examples = load_examples() def process_fields(fields): if isinstance(fields, str): fields = json.loads(fields) if isinstance(fields, dict): fields = [fields] return [field if isinstance(field, dict) else json.loads(field) for field in fields] def process_records_gradio(records, fields, question, example_records=None): try: # Convert string inputs to dictionaries if isinstance(records, str) and records: records = json.loads(records) if isinstance(example_records, str) and example_records: example_records = json.loads(example_records) if isinstance(fields, str) and fields: fields = json.loads(fields) if isinstance(question, str) and question: question = json.loads(question) if not fields and not question: raise Exception("Error: Either fields or question must be provided") runtime_parameters = {"fields": fields, "question": question} if example_records: runtime_parameters["example_records"] = example_records task.set_runtime_parameters(runtime_parameters) results = [] output = task.process(inputs=[{"record": record} for record in records]) output = next(output) for idx in range(len(records)): entry = output[idx] if entry["suggestions"]: results.append(entry["suggestions"]) return json.dumps({"results": results}, indent=2) except Exception as e: raise gr.Error(f"Error: {str(e)}") description = """ An example workflow for JSON payload. ```python import json import os from gradio_client import Client import argilla as rg # Initialize Argilla client client = rg.Argilla( api_key=os.environ["ARGILLA_API_KEY"], api_url=os.environ["ARGILLA_API_URL"] ) # Load the dataset dataset = client.datasets(name="my_dataset", workspace="my_workspace") # Prepare example data example_field = dataset.settings.fields["my_input_field"].serialize() example_question = dataset.settings.questions["my_question_to_predict"].serialize() payload = { "records": [next(dataset.records()).to_dict()], "fields": [example_field], "question": example_question, } # Use gradio client to process the data client = Client("davidberenstein1957/distilabel-argilla-labeller") result = client.predict( records=json.dumps(payload["records"]), example_records=json.dumps(payload["example_records"]), fields=json.dumps(payload["fields"]), question=json.dumps(payload["question"]), api_name="/predict" ) ``` """ interface = gr.Interface( fn=process_records_gradio, inputs=[ gr.Code(label="Records (JSON)", language="json", lines=5), gr.Code(label="Example Records (JSON, optional)", language="json", lines=5), gr.Code(label="Fields (JSON, optional)", language="json"), gr.Code(label="Question (JSON, optional)", language="json"), ], examples=examples, cache_examples=True, outputs=gr.Code(label="Suggestions", language="json", lines=10), title="Distilabel - ArgillaLabeller - Record Processing Interface", description=description, ) if __name__ == "__main__": interface.launch()