File size: 18,356 Bytes
fb096d2
099e99c
3c2fc33
 
 
 
 
099e99c
 
3c2fc33
 
cd47483
3c2fc33
 
fb096d2
3c2fc33
099e99c
3c2fc33
 
 
 
 
 
 
 
 
 
 
 
099e99c
7314f90
099e99c
 
fb096d2
099e99c
3c2fc33
 
fb096d2
3c2fc33
 
fb096d2
3c2fc33
fb096d2
3c2fc33
 
 
 
 
 
 
 
 
fb096d2
 
 
 
099e99c
88a4065
 
 
 
fb096d2
099e99c
fb096d2
 
 
 
099e99c
 
 
 
fb096d2
3c2fc33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb096d2
3c2fc33
 
 
 
 
 
 
 
 
 
 
fb096d2
3c2fc33
 
 
 
 
fb096d2
 
 
3c2fc33
 
 
 
 
 
 
fb096d2
 
 
 
3c2fc33
fb096d2
3c2fc33
fb096d2
3c2fc33
fb096d2
 
 
 
 
 
 
 
 
3c2fc33
 
 
fb096d2
88a4065
3c2fc33
 
 
fb096d2
 
 
 
 
3c2fc33
 
 
 
099e99c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb096d2
099e99c
 
 
 
 
 
fb096d2
099e99c
 
 
 
 
 
 
 
 
 
 
fb096d2
099e99c
 
 
 
88a4065
099e99c
 
 
 
 
 
88a4065
 
 
099e99c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb096d2
099e99c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c2fc33
 
 
 
 
 
 
60fd999
07a8bbc
 
 
3c2fc33
fb096d2
 
 
 
 
 
 
 
 
 
 
 
 
6521775
7314f90
14f85b1
7314f90
fb096d2
7314f90
 
 
 
fb096d2
 
 
 
 
 
 
 
 
 
 
 
 
 
7314f90
 
 
 
fb096d2
7314f90
fb096d2
7314f90
 
 
fb096d2
 
f007fb2
14f85b1
 
 
 
 
fb096d2
 
 
 
 
 
 
 
 
 
 
 
 
 
7314f90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb096d2
 
 
 
 
 
 
 
 
 
7314f90
 
fb096d2
f007fb2
7314f90
 
fb096d2
 
 
7314f90
 
14f85b1
fb096d2
 
7314f90
 
 
 
 
 
 
fb096d2
7314f90
 
 
 
 
 
 
 
 
 
 
 
 
 
fb096d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7314f90
fb096d2
099e99c
fb096d2
 
099e99c
 
 
fb096d2
099e99c
 
07a8bbc
 
 
 
3c2fc33
 
fb096d2
 
 
 
 
 
 
 
 
 
 
 
 
099e99c
3c2fc33
099e99c
3c2fc33
 
 
099e99c
3c2fc33
 
 
 
 
 
 
 
fb096d2
 
 
 
 
099e99c
 
 
 
 
 
 
fb096d2
099e99c
 
 
 
3c2fc33
 
fb096d2
099e99c
3c2fc33
fb096d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c2fc33
fb096d2
 
099e99c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
import json
import uuid
from typing import List, Union

import argilla as rg
import gradio as gr
import pandas as pd
from datasets import ClassLabel, Dataset, Features, Sequence, Value
from distilabel.distiset import Distiset
from huggingface_hub import HfApi

from distilabel_dataset_generator.constants import DEFAULT_BATCH_SIZE
from src.distilabel_dataset_generator.apps.base import (
    hide_success_message,
    show_success_message,
    validate_argilla_user_workspace_dataset,
    validate_push_to_hub,
)
from src.distilabel_dataset_generator.pipelines.embeddings import (
    get_embeddings,
    get_sentence_embedding_dimensions,
)
from src.distilabel_dataset_generator.pipelines.textcat import (
    DEFAULT_DATASET_DESCRIPTIONS,
    generate_pipeline_code,
    get_labeller_generator,
    get_prompt_generator,
    get_textcat_generator,
)
from src.distilabel_dataset_generator.utils import (
    get_argilla_client,
    get_org_dropdown,
    get_preprocess_labels,
    swap_visibility,
)


def generate_system_prompt(dataset_description, temperature, progress=gr.Progress()):
    progress(0.0, desc="Generating text classification task")
    progress(0.3, desc="Initializing text generation")
    generate_description = get_prompt_generator(temperature)
    progress(0.7, desc="Generating text classification task")
    result = next(
        generate_description.process(
            [
                {
                    "instruction": dataset_description,
                }
            ]
        )
    )[0]["generation"]
    progress(1.0, desc="Text classification task generated")
    data = json.loads(result)
    system_prompt = data["classification_task"]
    labels = data["labels"]
    return system_prompt, labels


def generate_sample_dataset(
    system_prompt, difficulty, clarity, labels, num_labels, progress=gr.Progress()
):
    dataframe = generate_dataset(
        system_prompt=system_prompt,
        difficulty=difficulty,
        clarity=clarity,
        labels=labels,
        num_labels=num_labels,
        num_rows=10,
        progress=progress,
        is_sample=True,
    )
    return dataframe


def generate_dataset(
    system_prompt: str,
    difficulty: str,
    clarity: str,
    labels: List[str] = None,
    num_labels: int = 1,
    num_rows: int = 10,
    is_sample: bool = False,
    progress=gr.Progress(),
) -> pd.DataFrame:
    progress(0.0, desc="(1/2) Generating text classification data")
    labels = get_preprocess_labels(labels)
    textcat_generator = get_textcat_generator(
        difficulty=difficulty, clarity=clarity, is_sample=is_sample
    )
    labeller_generator = get_labeller_generator(
        system_prompt=f"{system_prompt} {', '.join(labels)}",
        labels=labels,
        num_labels=num_labels,
    )
    total_steps: int = num_rows * 2
    batch_size = DEFAULT_BATCH_SIZE

    # create text classification data
    n_processed = 0
    textcat_results = []
    while n_processed < num_rows:
        progress(
            2 * 0.5 * n_processed / num_rows,
            total=total_steps,
            desc="(1/2) Generating text classification data",
        )
        remaining_rows = num_rows - n_processed
        batch_size = min(batch_size, remaining_rows)
        inputs = [
            {"task": f"{system_prompt} {', '.join(labels)}"} for _ in range(batch_size)
        ]
        batch = list(textcat_generator.process(inputs=inputs))
        textcat_results.extend(batch[0])
        n_processed += batch_size
    for result in textcat_results:
        result["text"] = result["input_text"]

    # label text classification data
    progress(2 * 0.5, desc="(1/2) Generating text classification data")
    n_processed = 0
    labeller_results = []
    while n_processed < num_rows:
        progress(
            0.5 + 0.5 * n_processed / num_rows,
            total=total_steps,
            desc="(1/2) Labeling text classification data",
        )
        batch = textcat_results[n_processed : n_processed + batch_size]
        labels_batch = list(labeller_generator.process(inputs=batch))
        labeller_results.extend(labels_batch[0])
        n_processed += batch_size
    progress(
        1,
        total=total_steps,
        desc="(2/2) Creating dataset",
    )

    # create final dataset
    distiset_results = []
    for result in labeller_results:
        record = {key: result[key] for key in ["labels", "text"] if key in result}
        distiset_results.append(record)

    dataframe = pd.DataFrame(distiset_results)
    if num_labels == 1:
        dataframe = dataframe.rename(columns={"labels": "label"})
        dataframe["label"] = dataframe["label"].apply(
            lambda x: x.lower().strip() if x.lower().strip() in labels else None
        )
    progress(1.0, desc="Dataset generation completed")
    return dataframe


def push_dataset_to_hub(
    dataframe: pd.DataFrame,
    org_name: str,
    repo_name: str,
    num_labels: int = 1,
    labels: List[str] = None,
    oauth_token: Union[gr.OAuthToken, None] = None,
    private: bool = False,
):
    repo_id = validate_push_to_hub(org_name, repo_name)
    labels = get_preprocess_labels(labels)
    if num_labels == 1:
        dataframe["label"] = dataframe["label"].replace("", None)
        features = Features(
            {"text": Value("string"), "label": ClassLabel(names=labels)}
        )
    else:
        features = Features(
            {
                "text": Value("string"),
                "labels": Sequence(feature=ClassLabel(names=labels)),
            }
        )
    distiset = Distiset({"default": Dataset.from_pandas(dataframe, features=features)})
    distiset.push_to_hub(
        repo_id=repo_id,
        private=private,
        include_script=False,
        token=oauth_token.token,
        create_pr=False,
    )


def push_dataset(
    org_name: str,
    repo_name: str,
    system_prompt: str,
    difficulty: str,
    clarity: str,
    num_labels: int = 1,
    num_rows: int = 10,
    labels: List[str] = None,
    private: bool = False,
    oauth_token: Union[gr.OAuthToken, None] = None,
    progress=gr.Progress(),
) -> pd.DataFrame:
    dataframe = generate_dataset(
        system_prompt=system_prompt,
        difficulty=difficulty,
        clarity=clarity,
        num_labels=num_labels,
        labels=labels,
        num_rows=num_rows,
    )
    push_dataset_to_hub(
        dataframe, org_name, repo_name, num_labels, labels, oauth_token, private
    )

    dataframe = dataframe[
        (dataframe["text"].str.strip() != "") & (dataframe["text"].notna())
    ]
    try:
        progress(0.1, desc="Setting up user and workspace")
        hf_user = HfApi().whoami(token=oauth_token.token)["name"]
        client = get_argilla_client()
        if client is None:
            return ""
        labels = get_preprocess_labels(labels)
        settings = rg.Settings(
            fields=[
                rg.TextField(
                    name="text",
                    description="The text classification data",
                    title="Text",
                ),
            ],
            questions=[
                (
                    rg.LabelQuestion(
                        name="label",
                        title="Label",
                        description="The label of the text",
                        labels=labels,
                    )
                    if num_labels == 1
                    else rg.MultiLabelQuestion(
                        name="labels",
                        title="Labels",
                        description="The labels of the conversation",
                        labels=labels,
                    )
                ),
            ],
            metadata=[
                rg.IntegerMetadataProperty(name="text_length", title="Text Length"),
            ],
            vectors=[
                rg.VectorField(
                    name="text_embeddings",
                    dimensions=get_sentence_embedding_dimensions(),
                )
            ],
            guidelines="Please review the text and provide or correct the label where needed.",
        )

        dataframe["text_length"] = dataframe["text"].apply(len)
        dataframe["text_embeddings"] = get_embeddings(dataframe["text"].to_list())

        progress(0.5, desc="Creating dataset")
        rg_dataset = client.datasets(name=repo_name, workspace=hf_user)
        if rg_dataset is None:
            rg_dataset = rg.Dataset(
                name=repo_name,
                workspace=hf_user,
                settings=settings,
                client=client,
            )
            rg_dataset = rg_dataset.create()
        progress(0.7, desc="Pushing dataset to Argilla")
        hf_dataset = Dataset.from_pandas(dataframe)
        records = [
            rg.Record(
                fields={
                    "text": sample["text"],
                },
                metadata={"text_length": sample["text_length"]},
                vectors={"text_embeddings": sample["text_embeddings"]},
                suggestions=(
                    [
                        rg.Suggestion(
                            question_name="label" if num_labels == 1 else "labels",
                            value=(
                                sample["label"] if num_labels == 1 else sample["labels"]
                            ),
                        )
                    ]
                    if (
                        (num_labels == 1 and sample["label"] in labels)
                        or (
                            num_labels > 1
                            and all(label in labels for label in sample["labels"])
                        )
                    )
                    else []
                ),
            )
            for sample in hf_dataset
        ]
        rg_dataset.records.log(records=records)
        progress(1.0, desc="Dataset pushed to Argilla")
    except Exception as e:
        raise gr.Error(f"Error pushing dataset to Argilla: {e}")
    return ""


def validate_input_labels(labels):
    if not labels or len(labels) < 2:
        raise gr.Error(
            f"Please select at least 2 labels to classify your text. You selected {len(labels) if labels else 0}."
        )
    return labels


def update_max_num_labels(labels):
    return gr.update(maximum=len(labels) if labels else 1)


def show_pipeline_code_visibility():
    return {pipeline_code_ui: gr.Accordion(visible=True)}


def hide_pipeline_code_visibility():
    return {pipeline_code_ui: gr.Accordion(visible=False)}


######################
# Gradio UI
######################


with gr.Blocks() as app:
    with gr.Column() as main_ui:
        gr.Markdown("## 1. Describe the dataset you want")
        with gr.Row():
            with gr.Column(scale=2):
                dataset_description = gr.Textbox(
                    label="Dataset description",
                    placeholder="Give a precise description of your desired dataset.",
                )
                with gr.Accordion("Temperature", open=False):
                    temperature = gr.Slider(
                        minimum=0.1,
                        maximum=1,
                        value=0.8,
                        step=0.1,
                        interactive=True,
                        show_label=False,
                    )
                load_btn = gr.Button(
                    "Create dataset",
                    variant="primary",
                )
            with gr.Column(scale=2):
                examples = gr.Examples(
                    examples=DEFAULT_DATASET_DESCRIPTIONS,
                    inputs=[dataset_description],
                    cache_examples=False,
                    label="Examples",
                )
            with gr.Column(scale=1):
                pass

        gr.HTML("<hr>")
        gr.Markdown("## 2. Configure your dataset")
        with gr.Row(equal_height=False):
            with gr.Column(scale=2):
                system_prompt = gr.Textbox(
                    label="System prompt",
                    placeholder="You are a helpful assistant.",
                    visible=True,
                )
                labels = gr.Dropdown(
                    choices=[],
                    allow_custom_value=True,
                    interactive=True,
                    label="Labels",
                    multiselect=True,
                    info="Add the labels to classify the text.",
                )
                num_labels = gr.Number(
                    label="Number of labels per text",
                    value=1,
                    minimum=1,
                    maximum=10,
                    info="Select 1 for single-label and >1 for multi-label.",
                    interactive=True,
                )
                clarity = gr.Dropdown(
                    choices=[
                        ("Clear", "clear"),
                        (
                            "Understandable",
                            "understandable with some effort",
                        ),
                        ("Ambiguous", "ambiguous"),
                        ("Mixed", "mixed"),
                    ],
                    value="mixed",
                    label="Clarity",
                    info="Set how easily the correct label or labels can be identified.",
                    interactive=True,
                )
                difficulty = gr.Dropdown(
                    choices=[
                        ("High School", "high school"),
                        ("College", "college"),
                        ("PhD", "PhD"),
                        ("Mixed", "mixed"),
                    ],
                    value="mixed",
                    label="Difficulty",
                    info="Select the comprehension level for the text. Ensure it matches the task context.",
                    interactive=True,
                )
                btn_apply_to_sample_dataset = gr.Button(
                    "Refresh dataset", variant="secondary"
                )
            with gr.Column(scale=3):
                dataframe = gr.Dataframe(
                    headers=["labels", "text"], wrap=True, height=500, interactive=False
                )

        gr.HTML("<hr>")
        gr.Markdown("## 3. Generate your dataset")
        with gr.Row(equal_height=False):
            with gr.Column(scale=2):
                org_name = get_org_dropdown()
                repo_name = gr.Textbox(
                    label="Repo name",
                    placeholder="dataset_name",
                    value=f"my-distiset-{str(uuid.uuid4())[:8]}",
                    interactive=True,
                )
                num_rows = gr.Number(
                    label="Number of rows",
                    value=10,
                    interactive=True,
                    scale=1,
                )
                private = gr.Checkbox(
                    label="Private dataset",
                    value=False,
                    interactive=True,
                    scale=1,
                )
                btn_push_to_hub = gr.Button("Push to Hub", variant="primary", scale=2)
            with gr.Column(scale=3):
                success_message = gr.Markdown(visible=True)
                with gr.Accordion(
                    "Do you want to go further? Customize and run with Distilabel",
                    open=False,
                    visible=False,
                ) as pipeline_code_ui:
                    code = generate_pipeline_code(
                        system_prompt.value,
                        difficulty=difficulty.value,
                        clarity=clarity.value,
                        labels=labels.value,
                        num_labels=num_labels.value,
                        num_rows=num_rows.value,
                    )
                    pipeline_code = gr.Code(
                        value=code,
                        language="python",
                        label="Distilabel Pipeline Code",
                    )

    load_btn.click(
        fn=generate_system_prompt,
        inputs=[dataset_description, temperature],
        outputs=[system_prompt, labels],
        show_progress=True,
    ).then(
        fn=generate_sample_dataset,
        inputs=[system_prompt, difficulty, clarity, labels, num_labels],
        outputs=[dataframe],
        show_progress=True,
    ).then(
        fn=update_max_num_labels,
        inputs=[labels],
        outputs=[num_labels],
    )

    labels.input(
        fn=update_max_num_labels,
        inputs=[labels],
        outputs=[num_labels],
    )

    btn_apply_to_sample_dataset.click(
        fn=generate_sample_dataset,
        inputs=[system_prompt, difficulty, clarity, labels, num_labels],
        outputs=[dataframe],
        show_progress=True,
    )

    btn_push_to_hub.click(
        fn=validate_argilla_user_workspace_dataset,
        inputs=[repo_name],
        outputs=[success_message],
        show_progress=True,
    ).then(
        fn=validate_push_to_hub,
        inputs=[org_name, repo_name],
        outputs=[success_message],
        show_progress=True,
    ).success(
        fn=hide_success_message,
        outputs=[success_message],
        show_progress=True,
    ).success(
        fn=hide_pipeline_code_visibility,
        inputs=[],
        outputs=[pipeline_code_ui],
    ).success(
        fn=push_dataset,
        inputs=[
            org_name,
            repo_name,
            system_prompt,
            difficulty,
            clarity,
            num_labels,
            num_rows,
            labels,
            private,
        ],
        outputs=[success_message],
        show_progress=True,
    ).success(
        fn=show_success_message,
        inputs=[org_name, repo_name],
        outputs=[success_message],
    ).success(
        fn=generate_pipeline_code,
        inputs=[
            system_prompt,
            difficulty,
            clarity,
            labels,
            num_labels,
            num_rows,
        ],
        outputs=[pipeline_code],
    ).success(
        fn=show_pipeline_code_visibility,
        inputs=[],
        outputs=[pipeline_code_ui],
    )

    app.load(fn=swap_visibility, outputs=main_ui)
    app.load(fn=get_org_dropdown, outputs=[org_name])