File size: 18,356 Bytes
fb096d2 099e99c 3c2fc33 099e99c 3c2fc33 cd47483 3c2fc33 fb096d2 3c2fc33 099e99c 3c2fc33 099e99c 7314f90 099e99c fb096d2 099e99c 3c2fc33 fb096d2 3c2fc33 fb096d2 3c2fc33 fb096d2 3c2fc33 fb096d2 099e99c 88a4065 fb096d2 099e99c fb096d2 099e99c fb096d2 3c2fc33 fb096d2 3c2fc33 fb096d2 3c2fc33 fb096d2 3c2fc33 fb096d2 3c2fc33 fb096d2 3c2fc33 fb096d2 3c2fc33 fb096d2 3c2fc33 fb096d2 88a4065 3c2fc33 fb096d2 3c2fc33 099e99c fb096d2 099e99c fb096d2 099e99c fb096d2 099e99c 88a4065 099e99c 88a4065 099e99c fb096d2 099e99c 3c2fc33 60fd999 07a8bbc 3c2fc33 fb096d2 6521775 7314f90 14f85b1 7314f90 fb096d2 7314f90 fb096d2 7314f90 fb096d2 7314f90 fb096d2 7314f90 fb096d2 f007fb2 14f85b1 fb096d2 7314f90 fb096d2 7314f90 fb096d2 f007fb2 7314f90 fb096d2 7314f90 14f85b1 fb096d2 7314f90 fb096d2 7314f90 fb096d2 7314f90 fb096d2 099e99c fb096d2 099e99c fb096d2 099e99c 07a8bbc 3c2fc33 fb096d2 099e99c 3c2fc33 099e99c 3c2fc33 099e99c 3c2fc33 fb096d2 099e99c fb096d2 099e99c 3c2fc33 fb096d2 099e99c 3c2fc33 fb096d2 3c2fc33 fb096d2 099e99c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 |
import json
import uuid
from typing import List, Union
import argilla as rg
import gradio as gr
import pandas as pd
from datasets import ClassLabel, Dataset, Features, Sequence, Value
from distilabel.distiset import Distiset
from huggingface_hub import HfApi
from distilabel_dataset_generator.constants import DEFAULT_BATCH_SIZE
from src.distilabel_dataset_generator.apps.base import (
hide_success_message,
show_success_message,
validate_argilla_user_workspace_dataset,
validate_push_to_hub,
)
from src.distilabel_dataset_generator.pipelines.embeddings import (
get_embeddings,
get_sentence_embedding_dimensions,
)
from src.distilabel_dataset_generator.pipelines.textcat import (
DEFAULT_DATASET_DESCRIPTIONS,
generate_pipeline_code,
get_labeller_generator,
get_prompt_generator,
get_textcat_generator,
)
from src.distilabel_dataset_generator.utils import (
get_argilla_client,
get_org_dropdown,
get_preprocess_labels,
swap_visibility,
)
def generate_system_prompt(dataset_description, temperature, progress=gr.Progress()):
progress(0.0, desc="Generating text classification task")
progress(0.3, desc="Initializing text generation")
generate_description = get_prompt_generator(temperature)
progress(0.7, desc="Generating text classification task")
result = next(
generate_description.process(
[
{
"instruction": dataset_description,
}
]
)
)[0]["generation"]
progress(1.0, desc="Text classification task generated")
data = json.loads(result)
system_prompt = data["classification_task"]
labels = data["labels"]
return system_prompt, labels
def generate_sample_dataset(
system_prompt, difficulty, clarity, labels, num_labels, progress=gr.Progress()
):
dataframe = generate_dataset(
system_prompt=system_prompt,
difficulty=difficulty,
clarity=clarity,
labels=labels,
num_labels=num_labels,
num_rows=10,
progress=progress,
is_sample=True,
)
return dataframe
def generate_dataset(
system_prompt: str,
difficulty: str,
clarity: str,
labels: List[str] = None,
num_labels: int = 1,
num_rows: int = 10,
is_sample: bool = False,
progress=gr.Progress(),
) -> pd.DataFrame:
progress(0.0, desc="(1/2) Generating text classification data")
labels = get_preprocess_labels(labels)
textcat_generator = get_textcat_generator(
difficulty=difficulty, clarity=clarity, is_sample=is_sample
)
labeller_generator = get_labeller_generator(
system_prompt=f"{system_prompt} {', '.join(labels)}",
labels=labels,
num_labels=num_labels,
)
total_steps: int = num_rows * 2
batch_size = DEFAULT_BATCH_SIZE
# create text classification data
n_processed = 0
textcat_results = []
while n_processed < num_rows:
progress(
2 * 0.5 * n_processed / num_rows,
total=total_steps,
desc="(1/2) Generating text classification data",
)
remaining_rows = num_rows - n_processed
batch_size = min(batch_size, remaining_rows)
inputs = [
{"task": f"{system_prompt} {', '.join(labels)}"} for _ in range(batch_size)
]
batch = list(textcat_generator.process(inputs=inputs))
textcat_results.extend(batch[0])
n_processed += batch_size
for result in textcat_results:
result["text"] = result["input_text"]
# label text classification data
progress(2 * 0.5, desc="(1/2) Generating text classification data")
n_processed = 0
labeller_results = []
while n_processed < num_rows:
progress(
0.5 + 0.5 * n_processed / num_rows,
total=total_steps,
desc="(1/2) Labeling text classification data",
)
batch = textcat_results[n_processed : n_processed + batch_size]
labels_batch = list(labeller_generator.process(inputs=batch))
labeller_results.extend(labels_batch[0])
n_processed += batch_size
progress(
1,
total=total_steps,
desc="(2/2) Creating dataset",
)
# create final dataset
distiset_results = []
for result in labeller_results:
record = {key: result[key] for key in ["labels", "text"] if key in result}
distiset_results.append(record)
dataframe = pd.DataFrame(distiset_results)
if num_labels == 1:
dataframe = dataframe.rename(columns={"labels": "label"})
dataframe["label"] = dataframe["label"].apply(
lambda x: x.lower().strip() if x.lower().strip() in labels else None
)
progress(1.0, desc="Dataset generation completed")
return dataframe
def push_dataset_to_hub(
dataframe: pd.DataFrame,
org_name: str,
repo_name: str,
num_labels: int = 1,
labels: List[str] = None,
oauth_token: Union[gr.OAuthToken, None] = None,
private: bool = False,
):
repo_id = validate_push_to_hub(org_name, repo_name)
labels = get_preprocess_labels(labels)
if num_labels == 1:
dataframe["label"] = dataframe["label"].replace("", None)
features = Features(
{"text": Value("string"), "label": ClassLabel(names=labels)}
)
else:
features = Features(
{
"text": Value("string"),
"labels": Sequence(feature=ClassLabel(names=labels)),
}
)
distiset = Distiset({"default": Dataset.from_pandas(dataframe, features=features)})
distiset.push_to_hub(
repo_id=repo_id,
private=private,
include_script=False,
token=oauth_token.token,
create_pr=False,
)
def push_dataset(
org_name: str,
repo_name: str,
system_prompt: str,
difficulty: str,
clarity: str,
num_labels: int = 1,
num_rows: int = 10,
labels: List[str] = None,
private: bool = False,
oauth_token: Union[gr.OAuthToken, None] = None,
progress=gr.Progress(),
) -> pd.DataFrame:
dataframe = generate_dataset(
system_prompt=system_prompt,
difficulty=difficulty,
clarity=clarity,
num_labels=num_labels,
labels=labels,
num_rows=num_rows,
)
push_dataset_to_hub(
dataframe, org_name, repo_name, num_labels, labels, oauth_token, private
)
dataframe = dataframe[
(dataframe["text"].str.strip() != "") & (dataframe["text"].notna())
]
try:
progress(0.1, desc="Setting up user and workspace")
hf_user = HfApi().whoami(token=oauth_token.token)["name"]
client = get_argilla_client()
if client is None:
return ""
labels = get_preprocess_labels(labels)
settings = rg.Settings(
fields=[
rg.TextField(
name="text",
description="The text classification data",
title="Text",
),
],
questions=[
(
rg.LabelQuestion(
name="label",
title="Label",
description="The label of the text",
labels=labels,
)
if num_labels == 1
else rg.MultiLabelQuestion(
name="labels",
title="Labels",
description="The labels of the conversation",
labels=labels,
)
),
],
metadata=[
rg.IntegerMetadataProperty(name="text_length", title="Text Length"),
],
vectors=[
rg.VectorField(
name="text_embeddings",
dimensions=get_sentence_embedding_dimensions(),
)
],
guidelines="Please review the text and provide or correct the label where needed.",
)
dataframe["text_length"] = dataframe["text"].apply(len)
dataframe["text_embeddings"] = get_embeddings(dataframe["text"].to_list())
progress(0.5, desc="Creating dataset")
rg_dataset = client.datasets(name=repo_name, workspace=hf_user)
if rg_dataset is None:
rg_dataset = rg.Dataset(
name=repo_name,
workspace=hf_user,
settings=settings,
client=client,
)
rg_dataset = rg_dataset.create()
progress(0.7, desc="Pushing dataset to Argilla")
hf_dataset = Dataset.from_pandas(dataframe)
records = [
rg.Record(
fields={
"text": sample["text"],
},
metadata={"text_length": sample["text_length"]},
vectors={"text_embeddings": sample["text_embeddings"]},
suggestions=(
[
rg.Suggestion(
question_name="label" if num_labels == 1 else "labels",
value=(
sample["label"] if num_labels == 1 else sample["labels"]
),
)
]
if (
(num_labels == 1 and sample["label"] in labels)
or (
num_labels > 1
and all(label in labels for label in sample["labels"])
)
)
else []
),
)
for sample in hf_dataset
]
rg_dataset.records.log(records=records)
progress(1.0, desc="Dataset pushed to Argilla")
except Exception as e:
raise gr.Error(f"Error pushing dataset to Argilla: {e}")
return ""
def validate_input_labels(labels):
if not labels or len(labels) < 2:
raise gr.Error(
f"Please select at least 2 labels to classify your text. You selected {len(labels) if labels else 0}."
)
return labels
def update_max_num_labels(labels):
return gr.update(maximum=len(labels) if labels else 1)
def show_pipeline_code_visibility():
return {pipeline_code_ui: gr.Accordion(visible=True)}
def hide_pipeline_code_visibility():
return {pipeline_code_ui: gr.Accordion(visible=False)}
######################
# Gradio UI
######################
with gr.Blocks() as app:
with gr.Column() as main_ui:
gr.Markdown("## 1. Describe the dataset you want")
with gr.Row():
with gr.Column(scale=2):
dataset_description = gr.Textbox(
label="Dataset description",
placeholder="Give a precise description of your desired dataset.",
)
with gr.Accordion("Temperature", open=False):
temperature = gr.Slider(
minimum=0.1,
maximum=1,
value=0.8,
step=0.1,
interactive=True,
show_label=False,
)
load_btn = gr.Button(
"Create dataset",
variant="primary",
)
with gr.Column(scale=2):
examples = gr.Examples(
examples=DEFAULT_DATASET_DESCRIPTIONS,
inputs=[dataset_description],
cache_examples=False,
label="Examples",
)
with gr.Column(scale=1):
pass
gr.HTML("<hr>")
gr.Markdown("## 2. Configure your dataset")
with gr.Row(equal_height=False):
with gr.Column(scale=2):
system_prompt = gr.Textbox(
label="System prompt",
placeholder="You are a helpful assistant.",
visible=True,
)
labels = gr.Dropdown(
choices=[],
allow_custom_value=True,
interactive=True,
label="Labels",
multiselect=True,
info="Add the labels to classify the text.",
)
num_labels = gr.Number(
label="Number of labels per text",
value=1,
minimum=1,
maximum=10,
info="Select 1 for single-label and >1 for multi-label.",
interactive=True,
)
clarity = gr.Dropdown(
choices=[
("Clear", "clear"),
(
"Understandable",
"understandable with some effort",
),
("Ambiguous", "ambiguous"),
("Mixed", "mixed"),
],
value="mixed",
label="Clarity",
info="Set how easily the correct label or labels can be identified.",
interactive=True,
)
difficulty = gr.Dropdown(
choices=[
("High School", "high school"),
("College", "college"),
("PhD", "PhD"),
("Mixed", "mixed"),
],
value="mixed",
label="Difficulty",
info="Select the comprehension level for the text. Ensure it matches the task context.",
interactive=True,
)
btn_apply_to_sample_dataset = gr.Button(
"Refresh dataset", variant="secondary"
)
with gr.Column(scale=3):
dataframe = gr.Dataframe(
headers=["labels", "text"], wrap=True, height=500, interactive=False
)
gr.HTML("<hr>")
gr.Markdown("## 3. Generate your dataset")
with gr.Row(equal_height=False):
with gr.Column(scale=2):
org_name = get_org_dropdown()
repo_name = gr.Textbox(
label="Repo name",
placeholder="dataset_name",
value=f"my-distiset-{str(uuid.uuid4())[:8]}",
interactive=True,
)
num_rows = gr.Number(
label="Number of rows",
value=10,
interactive=True,
scale=1,
)
private = gr.Checkbox(
label="Private dataset",
value=False,
interactive=True,
scale=1,
)
btn_push_to_hub = gr.Button("Push to Hub", variant="primary", scale=2)
with gr.Column(scale=3):
success_message = gr.Markdown(visible=True)
with gr.Accordion(
"Do you want to go further? Customize and run with Distilabel",
open=False,
visible=False,
) as pipeline_code_ui:
code = generate_pipeline_code(
system_prompt.value,
difficulty=difficulty.value,
clarity=clarity.value,
labels=labels.value,
num_labels=num_labels.value,
num_rows=num_rows.value,
)
pipeline_code = gr.Code(
value=code,
language="python",
label="Distilabel Pipeline Code",
)
load_btn.click(
fn=generate_system_prompt,
inputs=[dataset_description, temperature],
outputs=[system_prompt, labels],
show_progress=True,
).then(
fn=generate_sample_dataset,
inputs=[system_prompt, difficulty, clarity, labels, num_labels],
outputs=[dataframe],
show_progress=True,
).then(
fn=update_max_num_labels,
inputs=[labels],
outputs=[num_labels],
)
labels.input(
fn=update_max_num_labels,
inputs=[labels],
outputs=[num_labels],
)
btn_apply_to_sample_dataset.click(
fn=generate_sample_dataset,
inputs=[system_prompt, difficulty, clarity, labels, num_labels],
outputs=[dataframe],
show_progress=True,
)
btn_push_to_hub.click(
fn=validate_argilla_user_workspace_dataset,
inputs=[repo_name],
outputs=[success_message],
show_progress=True,
).then(
fn=validate_push_to_hub,
inputs=[org_name, repo_name],
outputs=[success_message],
show_progress=True,
).success(
fn=hide_success_message,
outputs=[success_message],
show_progress=True,
).success(
fn=hide_pipeline_code_visibility,
inputs=[],
outputs=[pipeline_code_ui],
).success(
fn=push_dataset,
inputs=[
org_name,
repo_name,
system_prompt,
difficulty,
clarity,
num_labels,
num_rows,
labels,
private,
],
outputs=[success_message],
show_progress=True,
).success(
fn=show_success_message,
inputs=[org_name, repo_name],
outputs=[success_message],
).success(
fn=generate_pipeline_code,
inputs=[
system_prompt,
difficulty,
clarity,
labels,
num_labels,
num_rows,
],
outputs=[pipeline_code],
).success(
fn=show_pipeline_code_visibility,
inputs=[],
outputs=[pipeline_code_ui],
)
app.load(fn=swap_visibility, outputs=main_ui)
app.load(fn=get_org_dropdown, outputs=[org_name])
|