File size: 18,756 Bytes
3c2fc33
 
 
 
 
 
 
 
 
 
 
 
cd47483
3c2fc33
 
60fd999
3c2fc33
fb096d2
3c2fc33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07a8bbc
 
3c2fc33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
578d0d3
4a432be
578d0d3
 
3c2fc33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb096d2
3c2fc33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
099e99c
3c2fc33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
099e99c
3c2fc33
 
2995161
3c2fc33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60fd999
3c2fc33
 
 
 
 
 
 
 
 
 
 
 
07a8bbc
 
 
 
 
3c2fc33
 
 
 
 
 
 
60fd999
3c2fc33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
099e99c
3c2fc33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
099e99c
3c2fc33
 
 
e756bd8
3c2fc33
 
 
 
60fd999
 
 
 
 
 
 
 
 
3c2fc33
60fd999
3c2fc33
 
 
 
 
 
 
 
 
 
 
 
099e99c
3c2fc33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb096d2
3c2fc33
5c6644f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c2fc33
 
 
 
 
 
fb096d2
 
 
 
 
099e99c
 
2995161
fb096d2
 
3c2fc33
 
 
fb096d2
 
 
 
 
3c2fc33
 
 
 
2995161
3c2fc33
099e99c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
import io
import uuid
from typing import Any, Callable, List, Tuple, Union

import argilla as rg
import gradio as gr
import pandas as pd
from datasets import ClassLabel, Dataset, Features, Sequence, Value
from distilabel.distiset import Distiset
from gradio import OAuthToken
from huggingface_hub import HfApi, upload_file

from distilabel_dataset_generator.utils import (
    _LOGGED_OUT_CSS,
    get_argilla_client,
    get_login_button,
    list_orgs,
    swap_visibility,
)

TEXTCAT_TASK = "text_classification"
SFT_TASK = "supervised_fine_tuning"


def get_main_ui(
    default_dataset_descriptions: List[str],
    default_system_prompts: List[str],
    default_datasets: List[pd.DataFrame],
    fn_generate_system_prompt: Callable,
    fn_generate_dataset: Callable,
    task: str,
):
    def fn_generate_sample_dataset(system_prompt, progress=gr.Progress()):
        if system_prompt in default_system_prompts:
            index = default_system_prompts.index(system_prompt)
            if index < len(default_datasets):
                return default_datasets[index]
        if task == TEXTCAT_TASK:
            result = fn_generate_dataset(
                system_prompt=system_prompt,
                difficulty="high school",
                clarity="clear",
                labels=[],
                num_labels=1,
                num_rows=1,
                progress=progress,
                is_sample=True,
            )
        else:
            result = fn_generate_dataset(
                system_prompt=system_prompt,
                num_turns=1,
                num_rows=1,
                progress=progress,
                is_sample=True,
            )
        return result

    with gr.Blocks(
        title="🧬 Synthetic Data Generator",
        head="🧬 Synthetic Data Generator",
        css=_LOGGED_OUT_CSS,
    ) as app:
        with gr.Row():
            gr.HTML(
                """<details style='display: inline-block;'><summary><h2 style='display: inline;'>How does it work?</h2></summary><img src='https://huggingface.co/spaces/argilla/synthetic-data-generator/resolve/main/assets/flow.png' width='100%' style='margin: 0 auto; display: block;'></details>"""
            )
        with gr.Row():
            gr.Markdown(
                "Want to run this locally or with other LLMs? Take a look at the FAQ tab. distilabel Synthetic Data Generator is free, we use the authentication token to push the dataset to the Hugging Face Hub and not for data generation."
            )
        with gr.Row():
            gr.Column()
            get_login_button()
            gr.Column()

        gr.Markdown("## Iterate on a sample dataset")
        with gr.Column() as main_ui:
            (
                dataset_description,
                examples,
                btn_generate_system_prompt,
                system_prompt,
                sample_dataset,
                btn_generate_sample_dataset,
            ) = get_iterate_on_sample_dataset_ui(
                default_dataset_descriptions=default_dataset_descriptions,
                default_system_prompts=default_system_prompts,
                default_datasets=default_datasets,
                task=task,
            )
            gr.Markdown("## Generate full dataset")
            gr.Markdown(
                "Once you're satisfied with the sample, generate a larger dataset and push it to Argilla or the Hugging Face Hub."
            )
            with gr.Row(variant="panel") as custom_input_ui:
                pass

            (
                dataset_name,
                add_to_existing_dataset,
                btn_generate_full_dataset_argilla,
                btn_generate_and_push_to_argilla,
                btn_push_to_argilla,
                org_name,
                repo_name,
                private,
                btn_generate_full_dataset,
                btn_generate_and_push_to_hub,
                btn_push_to_hub,
                final_dataset,
                success_message,
            ) = get_push_to_ui(default_datasets)

        sample_dataset.change(
            fn=lambda x: x,
            inputs=[sample_dataset],
            outputs=[final_dataset],
        )

        btn_generate_system_prompt.click(
            fn=fn_generate_system_prompt,
            inputs=[dataset_description],
            outputs=[system_prompt],
            show_progress=True,
        ).then(
            fn=fn_generate_sample_dataset,
            inputs=[system_prompt],
            outputs=[sample_dataset],
            show_progress=True,
        )

        btn_generate_sample_dataset.click(
            fn=fn_generate_sample_dataset,
            inputs=[system_prompt],
            outputs=[sample_dataset],
            show_progress=True,
        )

        app.load(fn=swap_visibility, outputs=main_ui)
        app.load(get_org_dropdown, outputs=[org_name])

    return (
        app,
        main_ui,
        custom_input_ui,
        dataset_description,
        examples,
        btn_generate_system_prompt,
        system_prompt,
        sample_dataset,
        btn_generate_sample_dataset,
        dataset_name,
        add_to_existing_dataset,
        btn_generate_full_dataset_argilla,
        btn_generate_and_push_to_argilla,
        btn_push_to_argilla,
        org_name,
        repo_name,
        private,
        btn_generate_full_dataset,
        btn_generate_and_push_to_hub,
        btn_push_to_hub,
        final_dataset,
        success_message,
    )


def validate_argilla_user_workspace_dataset(
    dataset_name: str,
    add_to_existing_dataset: bool = True,
    oauth_token: Union[OAuthToken, None] = None,
    progress=gr.Progress(),
) -> str:
    progress(0, desc="Validating dataset configuration")
    hf_user = HfApi().whoami(token=oauth_token.token)["name"]
    client = get_argilla_client()
    if dataset_name is None or dataset_name == "":
        raise gr.Error("Dataset name is required")
    # Create user if it doesn't exist
    rg_user = client.users(username=hf_user)
    if rg_user is None:
        rg_user = client.users.add(
            rg.User(username=hf_user, role="admin", password=str(uuid.uuid4()))
        )
    # Create workspace if it doesn't exist
    workspace = client.workspaces(name=hf_user)
    if workspace is None:
        workspace = client.workspaces.add(rg.Workspace(name=hf_user))
        workspace.add_user(hf_user)
    # Check if dataset exists
    dataset = client.datasets(name=dataset_name, workspace=hf_user)
    if dataset and not add_to_existing_dataset:
        raise gr.Error(f"Dataset {dataset_name} already exists")
    return ""


def get_org_dropdown(oauth_token: Union[OAuthToken, None]):
    orgs = list_orgs(oauth_token)
    return gr.Dropdown(
        label="Organization",
        choices=orgs,
        value=orgs[0] if orgs else None,
        allow_custom_value=True,
    )


def get_push_to_ui(default_datasets):
    with gr.Column() as push_to_ui:
        (
            dataset_name,
            add_to_existing_dataset,
            btn_generate_full_dataset_argilla,
            btn_generate_and_push_to_argilla,
            btn_push_to_argilla,
        ) = get_argilla_tab()
        (
            org_name,
            repo_name,
            private,
            btn_generate_full_dataset,
            btn_generate_and_push_to_hub,
            btn_push_to_hub,
        ) = get_hf_tab()
        final_dataset = get_final_dataset_row(default_datasets)
        success_message = get_success_message_row()
    return (
        dataset_name,
        add_to_existing_dataset,
        btn_generate_full_dataset_argilla,
        btn_generate_and_push_to_argilla,
        btn_push_to_argilla,
        org_name,
        repo_name,
        private,
        btn_generate_full_dataset,
        btn_generate_and_push_to_hub,
        btn_push_to_hub,
        final_dataset,
        success_message,
    )


def get_iterate_on_sample_dataset_ui(
    default_dataset_descriptions: List[str],
    default_system_prompts: List[str],
    default_datasets: List[pd.DataFrame],
    task: str,
):
    with gr.Column():
        dataset_description = gr.TextArea(
            label="Give a precise description of your desired application. Check the examples for inspiration.",
            value=default_dataset_descriptions[0],
            lines=2,
        )
        examples = gr.Examples(
            elem_id="system_prompt_examples",
            examples=[[example] for example in default_dataset_descriptions],
            inputs=[dataset_description],
        )
        with gr.Row():
            gr.Column(scale=1)
            btn_generate_system_prompt = gr.Button(
                value="Generate system prompt and sample dataset", variant="primary"
            )
            gr.Column(scale=1)

        system_prompt = gr.TextArea(
            label="System prompt for dataset generation. You can tune it and regenerate the sample.",
            value=default_system_prompts[0],
            lines=2 if task == TEXTCAT_TASK else 5,
        )

        with gr.Row():
            sample_dataset = gr.Dataframe(
                value=default_datasets[0],
                label=(
                    "Sample dataset. Text truncated to 256 tokens."
                    if task == TEXTCAT_TASK
                    else "Sample dataset. Prompts and completions truncated to 256 tokens."
                ),
                interactive=False,
                wrap=True,
            )

        with gr.Row():
            gr.Column(scale=1)
            btn_generate_sample_dataset = gr.Button(
                value="Generate sample dataset", variant="primary"
            )
            gr.Column(scale=1)

    return (
        dataset_description,
        examples,
        btn_generate_system_prompt,
        system_prompt,
        sample_dataset,
        btn_generate_sample_dataset,
    )


def get_argilla_tab() -> Tuple[Any]:
    with gr.Tab(label="Argilla"):
        if get_argilla_client() is not None:
            with gr.Row(variant="panel"):
                dataset_name = gr.Textbox(
                    label="Dataset name",
                    placeholder="dataset_name",
                    value="my-distiset",
                )
                add_to_existing_dataset = gr.Checkbox(
                    label="Allow adding records to existing dataset",
                    info="When selected, you do need to ensure the dataset options are the same as in the existing dataset.",
                    value=False,
                    interactive=True,
                    scale=1,
                )

            with gr.Row(variant="panel"):
                btn_generate_full_dataset_argilla = gr.Button(
                    value="Generate", variant="primary", scale=2
                )
                btn_generate_and_push_to_argilla = gr.Button(
                    value="Generate and Push to Argilla",
                    variant="primary",
                    scale=2,
                )
                btn_push_to_argilla = gr.Button(
                    value="Push to Argilla", variant="primary", scale=2
                )
        else:
            gr.Markdown(
                "Please add `ARGILLA_API_URL` and `ARGILLA_API_KEY` to use Argilla or export the dataset to the Hugging Face Hub."
            )
    return (
        dataset_name,
        add_to_existing_dataset,
        btn_generate_full_dataset_argilla,
        btn_generate_and_push_to_argilla,
        btn_push_to_argilla,
    )


def get_hf_tab() -> Tuple[Any]:
    with gr.Tab("Hugging Face Hub"):
        with gr.Row(variant="panel"):
            org_name = get_org_dropdown()
            repo_name = gr.Textbox(
                label="Repo name",
                placeholder="dataset_name",
                value="my-distiset",
            )
            private = gr.Checkbox(
                label="Private dataset",
                value=True,
                interactive=True,
                scale=1,
            )
        with gr.Row(variant="panel"):
            btn_generate_full_dataset = gr.Button(
                value="Generate", variant="primary", scale=2
            )
            btn_generate_and_push_to_hub = gr.Button(
                value="Generate and Push to Hub", variant="primary", scale=2
            )
            btn_push_to_hub = gr.Button(value="Push to Hub", variant="primary", scale=2)
    return (
        org_name,
        repo_name,
        private,
        btn_generate_full_dataset,
        btn_generate_and_push_to_hub,
        btn_push_to_hub,
    )


def push_pipeline_code_to_hub(
    pipeline_code: str,
    org_name: str,
    repo_name: str,
    oauth_token: Union[OAuthToken, None] = None,
    progress=gr.Progress(),
):
    repo_id = validate_push_to_hub(org_name, repo_name)
    progress(0.1, desc="Uploading pipeline code")
    with io.BytesIO(pipeline_code.encode("utf-8")) as f:
        upload_file(
            path_or_fileobj=f,
            path_in_repo="pipeline.py",
            repo_id=repo_id,
            repo_type="dataset",
            token=oauth_token.token,
            commit_message="Include pipeline script",
            create_pr=False,
        )
    progress(1.0, desc="Pipeline code uploaded")


def push_dataset_to_hub(
    dataframe: pd.DataFrame,
    private: bool = True,
    org_name: str = None,
    repo_name: str = None,
    oauth_token: Union[OAuthToken, None] = None,
    progress=gr.Progress(),
    labels: List[str] = None,
    num_labels: int = None,
    task: str = TEXTCAT_TASK,
) -> pd.DataFrame:
    progress(0.1, desc="Setting up dataset")
    repo_id = validate_push_to_hub(org_name, repo_name)

    if task == TEXTCAT_TASK:
        if num_labels == 1:
            dataframe["label"] = dataframe["label"].replace("", None)
            features = Features(
                {"text": Value("string"), "label": ClassLabel(names=labels)}
            )
        else:
            features = Features(
                {
                    "text": Value("string"),
                    "labels": Sequence(feature=ClassLabel(names=labels)),
                }
            )
        distiset = Distiset(
            {"default": Dataset.from_pandas(dataframe, features=features)}
        )
    else:
        distiset = Distiset({"default": Dataset.from_pandas(dataframe)})
    progress(0.2, desc="Pushing dataset to hub")
    distiset.push_to_hub(
        repo_id=repo_id,
        private=private,
        include_script=False,
        token=oauth_token.token,
        create_pr=False,
    )
    progress(1.0, desc="Dataset pushed to hub")
    return dataframe


def validate_push_to_hub(org_name, repo_name):
    repo_id = (
        f"{org_name}/{repo_name}"
        if repo_name is not None and org_name is not None
        else None
    )
    if repo_id is not None:
        if not all([repo_id, org_name, repo_name]):
            raise gr.Error(
                "Please provide a `repo_name` and `org_name` to push the dataset to."
            )
    return repo_id


def get_final_dataset_row(default_datasets) -> gr.Dataframe:
    with gr.Row():
        final_dataset = gr.Dataframe(
            value=default_datasets[0],
            label="Generated dataset",
            interactive=False,
            wrap=True,
            min_width=300,
        )
    return final_dataset


def get_success_message_row() -> gr.Markdown:
    with gr.Row():
        success_message = gr.Markdown(visible=False)
    return success_message


def show_success_message(org_name, repo_name) -> gr.Markdown:
    client = get_argilla_client()
    if client is None:
        return gr.Markdown(
            value="""
            <div style="padding: 1em; background-color: #e6f3e6; border-radius: 5px; margin-top: 1em;">
                <h3 style="color: #2e7d32; margin: 0;">Dataset Published Successfully!</h3>
                <p style="margin-top: 0.5em;">
                The generated dataset is in the right format for fine-tuning with TRL, AutoTrain, or other frameworks. Your dataset is now available at:
                <a href="https://huggingface.co/datasets/{org_name}/{repo_name}" target="_blank" style="color: #1565c0; text-decoration: none;">
                    https://huggingface.co/datasets/{org_name}/{repo_name}
                    </a>
                </p>
                <p style="margin-top: 1em; font-size: 0.9em; color: #333;">
                    By configuring an `ARGILLA_API_URL` and `ARGILLA_API_KEY` you can curate the dataset in Argilla.
                    Unfamiliar with Argilla? Here are some docs to help you get started:
                    <br>• <a href="https://docs.argilla.io/latest/getting_started/quickstart/" target="_blank">How to get started with Argilla</a>
                    <br>• <a href="https://docs.argilla.io/latest/how_to_guides/annotate/" target="_blank">How to curate data in Argilla</a>
                    <br>• <a href="https://docs.argilla.io/latest/how_to_guides/import_export/" target="_blank">How to export data once you have reviewed the dataset</a>
                </p>
            </div>
            """
        )
    argilla_api_url = client.api_url
    return gr.Markdown(
        value=f"""
        <div style="padding: 1em; background-color: #e6f3e6; border-radius: 5px; margin-top: 1em;">
            <h3 style="color: #2e7d32; margin: 0;">Dataset Published Successfully!</h3>
            <p style="margin-top: 0.5em;">
                <strong>
                    <a href="{argilla_api_url}" target="_blank" style="color: #1565c0; text-decoration: none;">
                        Open your dataset in the Argilla space
                    </a>
                </strong>
            </p>
            <p style="margin-top: 0.5em;">
                The generated dataset is in the right format for fine-tuning with TRL, AutoTrain, or other frameworks. Your dataset is now available at:
                <a href="https://huggingface.co/datasets/{org_name}/{repo_name}" target="_blank" style="color: #1565c0; text-decoration: none;">
                    https://huggingface.co/datasets/{org_name}/{repo_name}
                </a>
            </p>
        </div>
        <p style="margin-top: 1em; font-size: 0.9em; color: #333;">
            Unfamiliar with Argilla? Here are some docs to help you get started:
            <br>• <a href="https://docs.argilla.io/latest/how_to_guides/annotate/" target="_blank">How to curate data in Argilla</a>
            <br>• <a href="https://docs.argilla.io/latest/how_to_guides/import_export/" target="_blank">How to export data once you have reviewed the dataset</a>
        </p>
        """,
        visible=True,
    )


def hide_success_message() -> gr.Markdown:
    return gr.Markdown(value="")