File size: 18,756 Bytes
3c2fc33 cd47483 3c2fc33 60fd999 3c2fc33 fb096d2 3c2fc33 07a8bbc 3c2fc33 578d0d3 4a432be 578d0d3 3c2fc33 fb096d2 3c2fc33 099e99c 3c2fc33 099e99c 3c2fc33 2995161 3c2fc33 60fd999 3c2fc33 07a8bbc 3c2fc33 60fd999 3c2fc33 099e99c 3c2fc33 099e99c 3c2fc33 e756bd8 3c2fc33 60fd999 3c2fc33 60fd999 3c2fc33 099e99c 3c2fc33 fb096d2 3c2fc33 5c6644f 3c2fc33 fb096d2 099e99c 2995161 fb096d2 3c2fc33 fb096d2 3c2fc33 2995161 3c2fc33 099e99c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 |
import io
import uuid
from typing import Any, Callable, List, Tuple, Union
import argilla as rg
import gradio as gr
import pandas as pd
from datasets import ClassLabel, Dataset, Features, Sequence, Value
from distilabel.distiset import Distiset
from gradio import OAuthToken
from huggingface_hub import HfApi, upload_file
from distilabel_dataset_generator.utils import (
_LOGGED_OUT_CSS,
get_argilla_client,
get_login_button,
list_orgs,
swap_visibility,
)
TEXTCAT_TASK = "text_classification"
SFT_TASK = "supervised_fine_tuning"
def get_main_ui(
default_dataset_descriptions: List[str],
default_system_prompts: List[str],
default_datasets: List[pd.DataFrame],
fn_generate_system_prompt: Callable,
fn_generate_dataset: Callable,
task: str,
):
def fn_generate_sample_dataset(system_prompt, progress=gr.Progress()):
if system_prompt in default_system_prompts:
index = default_system_prompts.index(system_prompt)
if index < len(default_datasets):
return default_datasets[index]
if task == TEXTCAT_TASK:
result = fn_generate_dataset(
system_prompt=system_prompt,
difficulty="high school",
clarity="clear",
labels=[],
num_labels=1,
num_rows=1,
progress=progress,
is_sample=True,
)
else:
result = fn_generate_dataset(
system_prompt=system_prompt,
num_turns=1,
num_rows=1,
progress=progress,
is_sample=True,
)
return result
with gr.Blocks(
title="🧬 Synthetic Data Generator",
head="🧬 Synthetic Data Generator",
css=_LOGGED_OUT_CSS,
) as app:
with gr.Row():
gr.HTML(
"""<details style='display: inline-block;'><summary><h2 style='display: inline;'>How does it work?</h2></summary><img src='https://huggingface.co/spaces/argilla/synthetic-data-generator/resolve/main/assets/flow.png' width='100%' style='margin: 0 auto; display: block;'></details>"""
)
with gr.Row():
gr.Markdown(
"Want to run this locally or with other LLMs? Take a look at the FAQ tab. distilabel Synthetic Data Generator is free, we use the authentication token to push the dataset to the Hugging Face Hub and not for data generation."
)
with gr.Row():
gr.Column()
get_login_button()
gr.Column()
gr.Markdown("## Iterate on a sample dataset")
with gr.Column() as main_ui:
(
dataset_description,
examples,
btn_generate_system_prompt,
system_prompt,
sample_dataset,
btn_generate_sample_dataset,
) = get_iterate_on_sample_dataset_ui(
default_dataset_descriptions=default_dataset_descriptions,
default_system_prompts=default_system_prompts,
default_datasets=default_datasets,
task=task,
)
gr.Markdown("## Generate full dataset")
gr.Markdown(
"Once you're satisfied with the sample, generate a larger dataset and push it to Argilla or the Hugging Face Hub."
)
with gr.Row(variant="panel") as custom_input_ui:
pass
(
dataset_name,
add_to_existing_dataset,
btn_generate_full_dataset_argilla,
btn_generate_and_push_to_argilla,
btn_push_to_argilla,
org_name,
repo_name,
private,
btn_generate_full_dataset,
btn_generate_and_push_to_hub,
btn_push_to_hub,
final_dataset,
success_message,
) = get_push_to_ui(default_datasets)
sample_dataset.change(
fn=lambda x: x,
inputs=[sample_dataset],
outputs=[final_dataset],
)
btn_generate_system_prompt.click(
fn=fn_generate_system_prompt,
inputs=[dataset_description],
outputs=[system_prompt],
show_progress=True,
).then(
fn=fn_generate_sample_dataset,
inputs=[system_prompt],
outputs=[sample_dataset],
show_progress=True,
)
btn_generate_sample_dataset.click(
fn=fn_generate_sample_dataset,
inputs=[system_prompt],
outputs=[sample_dataset],
show_progress=True,
)
app.load(fn=swap_visibility, outputs=main_ui)
app.load(get_org_dropdown, outputs=[org_name])
return (
app,
main_ui,
custom_input_ui,
dataset_description,
examples,
btn_generate_system_prompt,
system_prompt,
sample_dataset,
btn_generate_sample_dataset,
dataset_name,
add_to_existing_dataset,
btn_generate_full_dataset_argilla,
btn_generate_and_push_to_argilla,
btn_push_to_argilla,
org_name,
repo_name,
private,
btn_generate_full_dataset,
btn_generate_and_push_to_hub,
btn_push_to_hub,
final_dataset,
success_message,
)
def validate_argilla_user_workspace_dataset(
dataset_name: str,
add_to_existing_dataset: bool = True,
oauth_token: Union[OAuthToken, None] = None,
progress=gr.Progress(),
) -> str:
progress(0, desc="Validating dataset configuration")
hf_user = HfApi().whoami(token=oauth_token.token)["name"]
client = get_argilla_client()
if dataset_name is None or dataset_name == "":
raise gr.Error("Dataset name is required")
# Create user if it doesn't exist
rg_user = client.users(username=hf_user)
if rg_user is None:
rg_user = client.users.add(
rg.User(username=hf_user, role="admin", password=str(uuid.uuid4()))
)
# Create workspace if it doesn't exist
workspace = client.workspaces(name=hf_user)
if workspace is None:
workspace = client.workspaces.add(rg.Workspace(name=hf_user))
workspace.add_user(hf_user)
# Check if dataset exists
dataset = client.datasets(name=dataset_name, workspace=hf_user)
if dataset and not add_to_existing_dataset:
raise gr.Error(f"Dataset {dataset_name} already exists")
return ""
def get_org_dropdown(oauth_token: Union[OAuthToken, None]):
orgs = list_orgs(oauth_token)
return gr.Dropdown(
label="Organization",
choices=orgs,
value=orgs[0] if orgs else None,
allow_custom_value=True,
)
def get_push_to_ui(default_datasets):
with gr.Column() as push_to_ui:
(
dataset_name,
add_to_existing_dataset,
btn_generate_full_dataset_argilla,
btn_generate_and_push_to_argilla,
btn_push_to_argilla,
) = get_argilla_tab()
(
org_name,
repo_name,
private,
btn_generate_full_dataset,
btn_generate_and_push_to_hub,
btn_push_to_hub,
) = get_hf_tab()
final_dataset = get_final_dataset_row(default_datasets)
success_message = get_success_message_row()
return (
dataset_name,
add_to_existing_dataset,
btn_generate_full_dataset_argilla,
btn_generate_and_push_to_argilla,
btn_push_to_argilla,
org_name,
repo_name,
private,
btn_generate_full_dataset,
btn_generate_and_push_to_hub,
btn_push_to_hub,
final_dataset,
success_message,
)
def get_iterate_on_sample_dataset_ui(
default_dataset_descriptions: List[str],
default_system_prompts: List[str],
default_datasets: List[pd.DataFrame],
task: str,
):
with gr.Column():
dataset_description = gr.TextArea(
label="Give a precise description of your desired application. Check the examples for inspiration.",
value=default_dataset_descriptions[0],
lines=2,
)
examples = gr.Examples(
elem_id="system_prompt_examples",
examples=[[example] for example in default_dataset_descriptions],
inputs=[dataset_description],
)
with gr.Row():
gr.Column(scale=1)
btn_generate_system_prompt = gr.Button(
value="Generate system prompt and sample dataset", variant="primary"
)
gr.Column(scale=1)
system_prompt = gr.TextArea(
label="System prompt for dataset generation. You can tune it and regenerate the sample.",
value=default_system_prompts[0],
lines=2 if task == TEXTCAT_TASK else 5,
)
with gr.Row():
sample_dataset = gr.Dataframe(
value=default_datasets[0],
label=(
"Sample dataset. Text truncated to 256 tokens."
if task == TEXTCAT_TASK
else "Sample dataset. Prompts and completions truncated to 256 tokens."
),
interactive=False,
wrap=True,
)
with gr.Row():
gr.Column(scale=1)
btn_generate_sample_dataset = gr.Button(
value="Generate sample dataset", variant="primary"
)
gr.Column(scale=1)
return (
dataset_description,
examples,
btn_generate_system_prompt,
system_prompt,
sample_dataset,
btn_generate_sample_dataset,
)
def get_argilla_tab() -> Tuple[Any]:
with gr.Tab(label="Argilla"):
if get_argilla_client() is not None:
with gr.Row(variant="panel"):
dataset_name = gr.Textbox(
label="Dataset name",
placeholder="dataset_name",
value="my-distiset",
)
add_to_existing_dataset = gr.Checkbox(
label="Allow adding records to existing dataset",
info="When selected, you do need to ensure the dataset options are the same as in the existing dataset.",
value=False,
interactive=True,
scale=1,
)
with gr.Row(variant="panel"):
btn_generate_full_dataset_argilla = gr.Button(
value="Generate", variant="primary", scale=2
)
btn_generate_and_push_to_argilla = gr.Button(
value="Generate and Push to Argilla",
variant="primary",
scale=2,
)
btn_push_to_argilla = gr.Button(
value="Push to Argilla", variant="primary", scale=2
)
else:
gr.Markdown(
"Please add `ARGILLA_API_URL` and `ARGILLA_API_KEY` to use Argilla or export the dataset to the Hugging Face Hub."
)
return (
dataset_name,
add_to_existing_dataset,
btn_generate_full_dataset_argilla,
btn_generate_and_push_to_argilla,
btn_push_to_argilla,
)
def get_hf_tab() -> Tuple[Any]:
with gr.Tab("Hugging Face Hub"):
with gr.Row(variant="panel"):
org_name = get_org_dropdown()
repo_name = gr.Textbox(
label="Repo name",
placeholder="dataset_name",
value="my-distiset",
)
private = gr.Checkbox(
label="Private dataset",
value=True,
interactive=True,
scale=1,
)
with gr.Row(variant="panel"):
btn_generate_full_dataset = gr.Button(
value="Generate", variant="primary", scale=2
)
btn_generate_and_push_to_hub = gr.Button(
value="Generate and Push to Hub", variant="primary", scale=2
)
btn_push_to_hub = gr.Button(value="Push to Hub", variant="primary", scale=2)
return (
org_name,
repo_name,
private,
btn_generate_full_dataset,
btn_generate_and_push_to_hub,
btn_push_to_hub,
)
def push_pipeline_code_to_hub(
pipeline_code: str,
org_name: str,
repo_name: str,
oauth_token: Union[OAuthToken, None] = None,
progress=gr.Progress(),
):
repo_id = validate_push_to_hub(org_name, repo_name)
progress(0.1, desc="Uploading pipeline code")
with io.BytesIO(pipeline_code.encode("utf-8")) as f:
upload_file(
path_or_fileobj=f,
path_in_repo="pipeline.py",
repo_id=repo_id,
repo_type="dataset",
token=oauth_token.token,
commit_message="Include pipeline script",
create_pr=False,
)
progress(1.0, desc="Pipeline code uploaded")
def push_dataset_to_hub(
dataframe: pd.DataFrame,
private: bool = True,
org_name: str = None,
repo_name: str = None,
oauth_token: Union[OAuthToken, None] = None,
progress=gr.Progress(),
labels: List[str] = None,
num_labels: int = None,
task: str = TEXTCAT_TASK,
) -> pd.DataFrame:
progress(0.1, desc="Setting up dataset")
repo_id = validate_push_to_hub(org_name, repo_name)
if task == TEXTCAT_TASK:
if num_labels == 1:
dataframe["label"] = dataframe["label"].replace("", None)
features = Features(
{"text": Value("string"), "label": ClassLabel(names=labels)}
)
else:
features = Features(
{
"text": Value("string"),
"labels": Sequence(feature=ClassLabel(names=labels)),
}
)
distiset = Distiset(
{"default": Dataset.from_pandas(dataframe, features=features)}
)
else:
distiset = Distiset({"default": Dataset.from_pandas(dataframe)})
progress(0.2, desc="Pushing dataset to hub")
distiset.push_to_hub(
repo_id=repo_id,
private=private,
include_script=False,
token=oauth_token.token,
create_pr=False,
)
progress(1.0, desc="Dataset pushed to hub")
return dataframe
def validate_push_to_hub(org_name, repo_name):
repo_id = (
f"{org_name}/{repo_name}"
if repo_name is not None and org_name is not None
else None
)
if repo_id is not None:
if not all([repo_id, org_name, repo_name]):
raise gr.Error(
"Please provide a `repo_name` and `org_name` to push the dataset to."
)
return repo_id
def get_final_dataset_row(default_datasets) -> gr.Dataframe:
with gr.Row():
final_dataset = gr.Dataframe(
value=default_datasets[0],
label="Generated dataset",
interactive=False,
wrap=True,
min_width=300,
)
return final_dataset
def get_success_message_row() -> gr.Markdown:
with gr.Row():
success_message = gr.Markdown(visible=False)
return success_message
def show_success_message(org_name, repo_name) -> gr.Markdown:
client = get_argilla_client()
if client is None:
return gr.Markdown(
value="""
<div style="padding: 1em; background-color: #e6f3e6; border-radius: 5px; margin-top: 1em;">
<h3 style="color: #2e7d32; margin: 0;">Dataset Published Successfully!</h3>
<p style="margin-top: 0.5em;">
The generated dataset is in the right format for fine-tuning with TRL, AutoTrain, or other frameworks. Your dataset is now available at:
<a href="https://huggingface.co/datasets/{org_name}/{repo_name}" target="_blank" style="color: #1565c0; text-decoration: none;">
https://huggingface.co/datasets/{org_name}/{repo_name}
</a>
</p>
<p style="margin-top: 1em; font-size: 0.9em; color: #333;">
By configuring an `ARGILLA_API_URL` and `ARGILLA_API_KEY` you can curate the dataset in Argilla.
Unfamiliar with Argilla? Here are some docs to help you get started:
<br>• <a href="https://docs.argilla.io/latest/getting_started/quickstart/" target="_blank">How to get started with Argilla</a>
<br>• <a href="https://docs.argilla.io/latest/how_to_guides/annotate/" target="_blank">How to curate data in Argilla</a>
<br>• <a href="https://docs.argilla.io/latest/how_to_guides/import_export/" target="_blank">How to export data once you have reviewed the dataset</a>
</p>
</div>
"""
)
argilla_api_url = client.api_url
return gr.Markdown(
value=f"""
<div style="padding: 1em; background-color: #e6f3e6; border-radius: 5px; margin-top: 1em;">
<h3 style="color: #2e7d32; margin: 0;">Dataset Published Successfully!</h3>
<p style="margin-top: 0.5em;">
<strong>
<a href="{argilla_api_url}" target="_blank" style="color: #1565c0; text-decoration: none;">
Open your dataset in the Argilla space
</a>
</strong>
</p>
<p style="margin-top: 0.5em;">
The generated dataset is in the right format for fine-tuning with TRL, AutoTrain, or other frameworks. Your dataset is now available at:
<a href="https://huggingface.co/datasets/{org_name}/{repo_name}" target="_blank" style="color: #1565c0; text-decoration: none;">
https://huggingface.co/datasets/{org_name}/{repo_name}
</a>
</p>
</div>
<p style="margin-top: 1em; font-size: 0.9em; color: #333;">
Unfamiliar with Argilla? Here are some docs to help you get started:
<br>• <a href="https://docs.argilla.io/latest/how_to_guides/annotate/" target="_blank">How to curate data in Argilla</a>
<br>• <a href="https://docs.argilla.io/latest/how_to_guides/import_export/" target="_blank">How to export data once you have reviewed the dataset</a>
</p>
""",
visible=True,
)
def hide_success_message() -> gr.Markdown:
return gr.Markdown(value="")
|