File size: 15,791 Bytes
2b4b309 2723bd3 2b4b309 90e8636 e4b6cc5 6fc91c7 90e8636 f7b33f1 90e8636 6fc91c7 40e000b 6fc91c7 2b4b309 90e8636 e1fdeee 6fc91c7 90e8636 6fc91c7 e36d40b 90e8636 f7b33f1 90e8636 6fc91c7 f7b33f1 40e000b 90e8636 6fc91c7 90e8636 6fc91c7 f7b33f1 90e8636 f7b33f1 e36d40b 2b4b309 2723bd3 e1fdeee 2723bd3 e1fdeee 2723bd3 2b4b309 6fc91c7 2b4b309 2723bd3 2b4b309 6fc91c7 2723bd3 2b4b309 6fc91c7 75f9ac3 6fc91c7 75f9ac3 6fc91c7 e36d40b 6fc91c7 4d1c962 f7b33f1 2723bd3 4d1c962 f7b33f1 2b4b309 0c58a58 ff44e29 2b4b309 2723bd3 4d1c962 2723bd3 4d1c962 2723bd3 2b4b309 6fc91c7 2723bd3 6fc91c7 2b4b309 6fc91c7 40e000b 6fc91c7 2b4b309 f7b33f1 2723bd3 e4b6cc5 2723bd3 2b4b309 90e8636 e4b6cc5 318e969 2723bd3 c7f7750 75f9ac3 c7f7750 90e8636 c7f7750 75f9ac3 90e8636 c7f7750 2723bd3 90e8636 c0c68e7 2723bd3 c0c68e7 2723bd3 c0c68e7 2723bd3 c0c68e7 75f9ac3 2723bd3 75f9ac3 2723bd3 75f9ac3 c0c68e7 2723bd3 75f9ac3 e36d40b 75f9ac3 40e000b 75f9ac3 40e000b 75f9ac3 2723bd3 75f9ac3 90e8636 318e969 2723bd3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
import multiprocessing
import time
import gradio as gr
import pandas as pd
from distilabel.distiset import Distiset
from distilabel.llms import InferenceEndpointsLLM
from distilabel.pipeline import Pipeline
from distilabel.steps import KeepColumns
from distilabel.steps.tasks import MagpieGenerator, TextGeneration
from src.distilabel_dataset_generator.utils import (
OAuthToken,
get_duplicate_button,
get_login_button,
get_org_dropdown,
swap_visibilty,
)
INFORMATION_SEEKING_PROMPT = (
"You are an AI assistant designed to provide accurate and concise information on a wide"
" range of topics. Your purpose is to assist users in finding specific facts,"
" explanations, or details about various subjects. Provide clear, factual responses and,"
" when appropriate, offer additional context or related information that might be useful"
" to the user."
)
REASONING_PROMPT = (
"You are an AI assistant specialized in logical thinking and problem-solving. Your"
" purpose is to help users work through complex ideas, analyze situations, and draw"
" conclusions based on given information. Approach each query with structured thinking,"
" break down problems into manageable parts, and guide users through the reasoning"
" process step-by-step."
)
PLANNING_PROMPT = (
"You are an AI assistant focused on helping users create effective plans and strategies."
" Your purpose is to assist in organizing thoughts, setting goals, and developing"
" actionable steps for various projects or activities. Offer structured approaches,"
" consider potential challenges, and provide tips for efficient execution of plans."
)
EDITING_PROMPT = (
"You are an AI assistant specialized in editing and improving written content. Your"
" purpose is to help users refine their writing by offering suggestions for grammar,"
" style, clarity, and overall structure. Provide constructive feedback, explain your"
" edits, and offer alternative phrasings when appropriate."
)
CODING_DEBUGGING_PROMPT = (
"You are an AI assistant designed to help with programming tasks. Your purpose is to"
" assist users in writing, reviewing, and debugging code across various programming"
" languages. Provide clear explanations, offer best practices, and help troubleshoot"
" issues. When appropriate, suggest optimizations or alternative approaches to coding"
" problems."
)
MATH_SYSTEM_PROMPT = (
"You are an AI assistant designed to provide helpful, step-by-step guidance on solving"
" math problems. The user will ask you a wide range of complex mathematical questions."
" Your purpose is to assist users in understanding mathematical concepts, working through"
" equations, and arriving at the correct solutions."
)
ROLE_PLAYING_PROMPT = (
"You are an AI assistant capable of engaging in various role-playing scenarios. Your"
" purpose is to adopt different personas or characters as requested by the user. Maintain"
" consistency with the chosen role, respond in character, and help create immersive and"
" interactive experiences for the user."
)
DATA_ANALYSIS_PROMPT = (
"You are an AI assistant specialized in data analysis and interpretation. Your purpose is"
" to help users understand and derive insights from data sets, statistics, and analytical"
" tasks. Offer clear explanations of data trends, assist with statistical calculations,"
" and provide guidance on data visualization and interpretation techniques."
)
CREATIVE_WRITING_PROMPT = (
"You are an AI assistant designed to support creative writing endeavors. Your purpose is"
" to help users craft engaging stories, poems, and other creative texts. Offer"
" suggestions for plot development, character creation, dialogue writing, and other"
" aspects of creative composition. Provide constructive feedback and inspire creativity."
)
ADVICE_SEEKING_PROMPT = (
"You are an AI assistant focused on providing thoughtful advice and guidance. Your"
" purpose is to help users navigate various personal or professional issues by offering"
" balanced perspectives, considering potential outcomes, and suggesting practical"
" solutions. Encourage users to think critically about their situations while providing"
" supportive and constructive advice."
)
BRAINSTORMING_PROMPT = (
"You are an AI assistant specialized in generating ideas and facilitating creative"
" thinking. Your purpose is to help users explore possibilities, think outside the box,"
" and develop innovative concepts. Encourage free-flowing thoughts, offer diverse"
" perspectives, and help users build upon and refine their ideas."
)
PROMPT_CREATION_PROMPT = f"""You are an AI assistant specialized in generating very precise prompts for dataset creation.
Your task is to write a prompt following the instruction of the user. Respond with the prompt and nothing else.
The prompt you write should follow the same style and structure as the following example prompts:
{INFORMATION_SEEKING_PROMPT}
{REASONING_PROMPT}
{PLANNING_PROMPT}
{CODING_DEBUGGING_PROMPT}
{EDITING_PROMPT}
{ROLE_PLAYING_PROMPT}
{DATA_ANALYSIS_PROMPT}
{CREATIVE_WRITING_PROMPT}
{ADVICE_SEEKING_PROMPT}
{BRAINSTORMING_PROMPT}
User dataset description:
"""
MODEL = "meta-llama/Meta-Llama-3.1-70B-Instruct"
DEFAULT_SYSTEM_PROMPT_DESCRIPTION = (
"A chemistry dataset for an assistant that explains chemical reactions and formulas"
)
DEFAULT_SYSTEM_PROMPT = "You are an AI assistant specializing in chemistry and chemical reactions. Your purpose is to help users understand and work with chemical formulas, equations, and reactions. Provide clear explanations of reaction mechanisms, assist in balancing chemical equations, and offer guidance on the interpretation of chemical structures. Explain the roles of reactants, products, catalysts, and solvents, and define key chemistry terms when necessary."
DEFAULT_DATASET = pd.DataFrame(
{
"instruction": [
"What is the term for the study of the structure and evolution of the Earth's interior. "
],
"response": [
"""The study of the structure and evolution of the Earth's interior is called geophysics, particularly the subfield of geology known as geodynamics, and more specifically the subfield of geology known as geotectonics. However, a more specific term for this study is "geology of the Earth's interior" or "Earth internal structure." However, the most commonly used term for this study is geophysics. """
],
}
)
def _run_pipeline(result_queue, num_turns, num_rows, system_prompt, token: str = None):
if num_turns == 1:
output_mappings = {"instruction": "prompt", "response": "completion"}
else:
output_mappings = {"conversation": "messages"}
with Pipeline(name="sft") as pipeline:
magpie = MagpieGenerator(
llm=InferenceEndpointsLLM(
model_id=MODEL,
tokenizer_id=MODEL,
magpie_pre_query_template="llama3",
generation_kwargs={
"temperature": 0.8, # it's the best value for Llama 3.1 70B Instruct
"do_sample": True,
"max_new_tokens": 2048,
"stop_sequences": [
"<|eot_id|>",
"<|end_of_text|>",
"<|start_header_id|>",
"<|end_header_id|>",
"assistant",
],
},
api_key=token,
),
n_turns=num_turns,
num_rows=num_rows,
system_prompt=system_prompt,
output_mappings=output_mappings,
)
keep_columns = KeepColumns(
columns=list(output_mappings.values()) + ["model_name"],
)
magpie.connect(keep_columns)
distiset: Distiset = pipeline.run(use_cache=False)
result_queue.put(distiset)
def generate_system_prompt(dataset_description, token: OAuthToken = None, progress=gr.Progress()):
progress(0.1, desc="Initializing text generation")
generate_description = TextGeneration(
llm=InferenceEndpointsLLM(
model_id=MODEL,
tokenizer_id=MODEL,
generation_kwargs={
"temperature": 0.8,
"max_new_tokens": 2048,
"do_sample": True,
},
),
use_system_prompt=True,
)
progress(0.4, desc="Loading model")
generate_description.load()
progress(0.7, desc="Generating system prompt")
result = next(
generate_description.process(
[
{
"system_prompt": PROMPT_CREATION_PROMPT,
"instruction": dataset_description,
}
]
)
)[0]["generation"]
progress(1.0, desc="System prompt generated")
return result
def generate_sample_dataset(system_prompt, progress=gr.Progress()):
progress(0.1, desc="Initializing sample dataset generation")
result = generate_dataset(system_prompt, num_turns=1, num_rows=2, progress=progress)
progress(1.0, desc="Sample dataset generated")
return result
def generate_dataset(
system_prompt,
num_turns=1,
num_rows=5,
private=True,
orgs_selector=None,
dataset_name=None,
token: OAuthToken = None,
progress=gr.Progress(),
):
if dataset_name is not None:
if not dataset_name:
raise gr.Error("Please provide a dataset name to push the dataset to.")
if token is None:
raise gr.Error(
"Please sign in with Hugging Face to be able to push the dataset to the Hub."
)
if num_turns > 4:
raise gr.Info(
"You can only generate a dataset with 4 or fewer turns. Setting to 4."
)
num_turns = 4
if num_rows > 5000:
raise gr.Info(
"You can only generate a dataset with 5000 or fewer rows. Setting to 5000."
)
num_rows = 5000
if num_rows < 50:
duration = 60
elif num_rows < 250:
duration = 300
elif num_rows < 1000:
duration = 500
else:
duration = 1000
gr.Info(
"Dataset generation started. This might take a while. Don't close the page.",
duration=duration,
)
result_queue = multiprocessing.Queue()
p = multiprocessing.Process(
target=_run_pipeline,
args=(result_queue, num_turns, num_rows, system_prompt),
)
try:
p.start()
total_steps = 100
for step in range(total_steps):
if not p.is_alive():
break
progress((step + 1) / total_steps, desc=f"Generating dataset with {num_rows} rows")
time.sleep(0.5) # Adjust this value based on your needs
p.join()
except Exception as e:
raise gr.Error(f"An error occurred during dataset generation: {str(e)}")
distiset = result_queue.get()
if dataset_name is not None:
progress(0.95, desc="Pushing dataset to Hugging Face Hub.")
repo_id = f"{orgs_selector}/{dataset_name}"
distiset.push_to_hub(
repo_id=repo_id,
private=private,
include_script=False,
token=token.token,
)
gr.Info(
f'Dataset pushed to Hugging Face Hub: <a href="https://huggingface.co/datasets/{repo_id}">https://huggingface.co/datasets/{repo_id}</a>'
)
# If not pushing to hub generate the dataset directly
distiset = distiset["default"]["train"]
if num_turns == 1:
outputs = distiset.to_pandas()[["prompt", "completion"]]
else:
outputs = distiset.to_pandas()[["messages"]]
# outputs = {"conversation_id": [], "role": [], "content": []}
# conversations = distiset["messages"]
# for idx, entry in enumerate(conversations):
# for message in entry["messages"]:
# outputs["conversation_id"].append(idx + 1)
# outputs["role"].append(message["role"])
# outputs["content"].append(message["content"])
progress(1.0, desc="Dataset generation completed")
return pd.DataFrame(outputs)
with gr.Blocks(
title="⚗️ Distilabel Dataset Generator",
head="⚗️ Distilabel Dataset Generator",
) as app:
gr.Markdown("## Iterate on a sample dataset")
dataset_description = gr.TextArea(
label="Provide a description of the dataset",
value=DEFAULT_SYSTEM_PROMPT_DESCRIPTION,
)
with gr.Row():
gr.Column(scale=1)
btn_generate_system_prompt = gr.Button(
value="Generate sample dataset"
)
gr.Column(scale=1)
system_prompt = gr.TextArea(
label="If you want to improve the dataset, you can tune the system prompt and regenerate the sample",
value=DEFAULT_SYSTEM_PROMPT,
)
with gr.Row():
gr.Column(scale=1)
btn_generate_sample_dataset = gr.Button(
value="Regenerate sample dataset",
)
gr.Column(scale=1)
#table = gr.HTML(_format_dataframe_as_html(DEFAULT_DATASET))
table = gr.DataFrame(
value=DEFAULT_DATASET,
interactive=False,
wrap=True,
)
btn_generate_system_prompt.click(
fn=generate_system_prompt,
inputs=[dataset_description],
outputs=[system_prompt],
show_progress=True,
).then(
fn=generate_sample_dataset,
inputs=[system_prompt],
outputs=[table],
show_progress=True,
)
btn_generate_sample_dataset.click(
fn=generate_sample_dataset,
inputs=[system_prompt],
outputs=[table],
show_progress=True,
)
# Add a header for the full dataset generation section
gr.Markdown("## Generate full dataset and push to hub")
gr.Markdown("Once you're satisfied with the sample, generate a larger dataset and push it to the hub.")
btn_login: gr.LoginButton | None = get_login_button()
with gr.Column() as push_to_hub_ui:
with gr.Row(variant="panel"):
num_turns = gr.Number(
value=1,
label="Number of turns in the conversation",
maximum=4,
info="Whether the dataset is for a single turn with 'instruction-response' columns or a multi-turn conversation with a 'conversation' column.",
)
num_rows = gr.Number(
value=100,
label="Number of rows in the dataset",
minimum=1,
maximum=5000,
info="The number of rows in the dataset. Note that you are able to generate more rows at once but that this will take time.",
)
private = gr.Checkbox(label="Private dataset", value=True, interactive=True)
with gr.Row(variant="panel"):
orgs_selector = gr.Dropdown(label="Organization")
dataset_name_push_to_hub = gr.Textbox(label="Dataset Name to push to Hub")
btn_generate_full_dataset = gr.Button(
value="⚗️ Generate Full Dataset", variant="primary"
)
btn_generate_full_dataset.click(
fn=generate_dataset,
inputs=[
system_prompt,
num_turns,
num_rows,
private,
orgs_selector,
dataset_name_push_to_hub,
],
outputs=[table],
show_progress=True,
)
app.load(get_org_dropdown, outputs=[orgs_selector])
app.load(fn=swap_visibilty, outputs=push_to_hub_ui) |