File size: 10,450 Bytes
3c2fc33
 
b2669f7
f230d42
3c2fc33
 
 
b2669f7
 
3c2fc33
0d14ea5
b2669f7
 
3c2fc33
8291c8c
f230d42
3c2fc33
8291c8c
 
 
 
3c2fc33
 
 
099e99c
3c2fc33
 
 
0d14ea5
3c2fc33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d14ea5
099e99c
3c2fc33
 
 
 
 
 
 
 
 
f230d42
3c2fc33
 
 
 
 
 
 
 
 
 
 
 
 
 
c54ccc3
3c2fc33
 
 
 
 
 
 
 
 
 
 
 
 
2841b26
 
 
ffa2ee0
b06a781
2841b26
 
 
 
b06a781
 
ffa2ee0
 
 
 
c54ccc3
3c2fc33
5c6644f
 
791a4a1
86f370f
 
 
dc56474
 
 
 
 
 
86f370f
962b6f3
86f370f
 
 
 
 
 
714b133
86f370f
 
bec79d4
 
 
5c6644f
3c2fc33
ad2dc0f
 
 
3c2fc33
 
86f370f
 
 
9029def
86f370f
2755e1e
86f370f
 
 
 
962b6f3
86f370f
 
 
 
714b133
86f370f
3c2fc33
bec79d4
 
 
3c2fc33
 
2995161
3c2fc33
bec79d4
7b7c1be
 
 
 
 
 
 
 
 
0d14ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2669f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import io
import uuid
from tqdm import tqdm
from typing import Union

import argilla as rg
import gradio as gr
import pandas as pd
from datasets import Dataset, concatenate_datasets, get_dataset_config_names, get_dataset_split_names, load_dataset
from gradio import OAuthToken
from huggingface_hub import HfApi, upload_file, repo_exists
from unstructured.chunking.title import chunk_by_title
from unstructured.partition.auto import partition

from synthetic_dataset_generator.constants import MAX_NUM_ROWS, SAVE_LOCAL_DIR
from synthetic_dataset_generator.utils import get_argilla_client

if SAVE_LOCAL_DIR is not None:
    import os
    os.makedirs(SAVE_LOCAL_DIR, exist_ok=True)


def validate_argilla_user_workspace_dataset(
    dataset_name: str,
    add_to_existing_dataset: bool = True,
    oauth_token: Union[OAuthToken, None] = None,
    progress=gr.Progress(),
) -> str:
    progress(0.1, desc="Validating dataset configuration")
    hf_user = HfApi().whoami(token=oauth_token.token)["name"]
    client = get_argilla_client()
    if dataset_name is None or dataset_name == "":
        raise gr.Error("Dataset name is required")
    # Create user if it doesn't exist
    rg_user = client.users(username=hf_user)
    if rg_user is None:
        rg_user = client.users.add(
            rg.User(username=hf_user, role="admin", password=str(uuid.uuid4()))
        )
    # Create workspace if it doesn't exist
    workspace = client.workspaces(name=hf_user)
    if workspace is None:
        workspace = client.workspaces.add(rg.Workspace(name=hf_user))
        workspace.add_user(hf_user)
    # Check if dataset exists
    dataset = client.datasets(name=dataset_name, workspace=hf_user)
    if dataset and not add_to_existing_dataset:
        raise gr.Error(f"Dataset {dataset_name} already exists")
    progress(1.0, desc="Dataset configuration validated")
    return ""


def push_pipeline_code_to_hub(
    pipeline_code: str,
    org_name: str,
    repo_name: str,
    oauth_token: Union[OAuthToken, None] = None,
    progress=gr.Progress(),
):
    repo_id: str | None = validate_push_to_hub(org_name, repo_name)
    progress(0.1, desc="Uploading pipeline code")
    with io.BytesIO(pipeline_code.encode("utf-8")) as f:
        upload_file(
            path_or_fileobj=f,
            path_in_repo="pipeline.py",
            repo_id=repo_id,
            repo_type="dataset",
            token=oauth_token.token,
            commit_message="Include pipeline script",
            create_pr=False,
        )
    progress(1.0, desc="Pipeline code uploaded")


def validate_push_to_hub(org_name: str, repo_name: str):
    repo_id = (
        f"{org_name}/{repo_name}"
        if repo_name is not None and org_name is not None
        else None
    )
    if repo_id is not None:
        if not all([repo_id, org_name, repo_name]):
            raise gr.Error(
                "Please provide a `repo_name` and `org_name` to push the dataset to."
            )
    return repo_id


def combine_datasets(
    repo_id: str, dataset: Dataset, oauth_token: Union[OAuthToken, None]
) -> Dataset:
    try:
        new_dataset = load_dataset(
            repo_id,
            split="train",
            download_mode="force_redownload",
            token=oauth_token.token,
        )
        return concatenate_datasets([dataset, new_dataset])
    except Exception:
        return dataset


def show_success_message(org_name: str, repo_name: str) -> gr.Markdown:
    client = get_argilla_client()
    if client is None:
        return gr.Markdown(
            value=f"""
                <div style="padding: 1em; background-color: var(--block-background-fill); border-color: var(--border-color-primary); border-width: 1px; border-radius: 5px;">
                    <h3 style="color: #2e7d32; margin: 0;">Dataset Published Successfully!</h3>
                    <p style="margin-top: 0.5em;">
                        The generated dataset is in the right format for fine-tuning with TRL, AutoTrain, or other frameworks.
                        <div style="display: flex; gap: 10px;">
                            <a href="https://huggingface.co/datasets/{org_name}/{repo_name}" target="_blank" class="lg primary svelte-1137axg" style="color: white !important; margin-top: 0.5em; text-decoration: none;">
                                Open in Hugging Face
                            </a>
                        </div>
                    </p>
                    <p style="margin-top: 1em; color: var(--block-title-text-color)">
                        By configuring an `ARGILLA_API_URL` and `ARGILLA_API_KEY` you can curate the dataset in Argilla.
                        Unfamiliar with Argilla? Here are some docs to help you get started:
                        <br>• <a href="https://docs.argilla.io/latest/getting_started/quickstart/" target="_blank">How to get started with Argilla</a>
                        <br>• <a href="https://docs.argilla.io/latest/how_to_guides/annotate/" target="_blank">How to curate data in Argilla</a>
                        <br>• <a href="https://docs.argilla.io/latest/how_to_guides/import_export/" target="_blank">How to export data once you have reviewed the dataset</a>
                    </p>
                </div>
                """,
            visible=True,
            height=None,
            min_height=None,
            max_height=None,
        )
    argilla_api_url = client.api_url
    # Transform Docker internal URL to localhost if needed
    if "argilla:" in argilla_api_url:
        argilla_api_url = argilla_api_url.replace("argilla:", "127.0.0.1:")
    return gr.Markdown(
        value=f"""
                <div style="padding: 1em; background-color: var(--block-background-fill); border-color: var(--border-color-primary); border-width: 1px; border-radius: 5px;">
                    <h3 style="color: #2e7d32; margin: 0;">Dataset Published Successfully!</h3>
                    <p style="margin-top: 0.5em;">
                        The generated dataset is <a href="https://huggingface.co/datasets/{org_name}/{repo_name}" target="_blank">available in the Hub</a>. It is in the right format for fine-tuning with TRL, AutoTrain, or other frameworks.
                        <div style="display: flex; gap: 10px;">
                            <a href="{argilla_api_url}" target="_blank" class="lg primary svelte-1137axg" style="color: white !important; margin-top: 0.5em; text-decoration: none;">
                                Open in Argilla
                            </a>
                        </div>
                    </p>
                    <p style="margin-top: 1em; color: var(--block-title-text-color)">
                        Unfamiliar with Argilla? Here are some docs to help you get started:
                        <br>• <a href="https://docs.argilla.io/latest/how_to_guides/annotate/" target="_blank">How to curate data in Argilla</a>
                        <br>• <a href="https://docs.argilla.io/latest/how_to_guides/import_export/" target="_blank">How to export data once you have reviewed the dataset</a>
                    </p>
                </div>
            """,
        visible=True,
        height=None,
        min_height=None,
        max_height=None,
    )


def hide_success_message() -> gr.Markdown:
    return gr.Markdown(value="", visible=True, height=100)


def test_max_num_rows(num_rows: int) -> int:
    if num_rows > MAX_NUM_ROWS:
        num_rows = MAX_NUM_ROWS
        gr.Info(
            f"Number of rows is larger than the configured maximum. Setting number of rows to {MAX_NUM_ROWS}. Set environment variable `MAX_NUM_ROWS` to change this behavior."
        )
    return num_rows


def get_iframe(hub_repo_id: str) -> str:
    if not hub_repo_id:
        return ""

    if not repo_exists(repo_id=hub_repo_id, repo_type="dataset"):
        return ""

    url = f"https://huggingface.co/datasets/{hub_repo_id}/embed/viewer"
    iframe = f"""
    <iframe
        src="{url}"
        frameborder="0"
        width="100%"
        height="600px"
    ></iframe>
    """
    return iframe


def _get_valid_columns(dataframe: pd.DataFrame):
    doc_valid_columns = []

    for col in dataframe.columns:
        sample_val = dataframe[col].iloc[0]
        if isinstance(sample_val, str):
            doc_valid_columns.append(col)

    return doc_valid_columns


def load_dataset_from_hub(
    repo_id: str,
    num_rows: int = 10,
    token: Union[OAuthToken, None] = None,
    progress=gr.Progress(track_tqdm=True),
):
    if not repo_id:
        raise gr.Error("Please provide a Hub repo ID")
    subsets = get_dataset_config_names(repo_id, token=token)
    splits = get_dataset_split_names(repo_id, subsets[0], token=token)
    ds = load_dataset(repo_id, subsets[0], split=splits[0], token=token, streaming=True)
    rows = []
    for idx, row in enumerate(tqdm(ds, desc="Loading the dataset", total=num_rows)):
        rows.append(row)
        if idx == num_rows:
            break
    ds = Dataset.from_list(rows)
    dataframe = ds.to_pandas()
    doc_valid_columns = _get_valid_columns(dataframe)
    col_doc = doc_valid_columns[0] if doc_valid_columns else ""
    return (
        dataframe,
        gr.Dropdown(
            choices=doc_valid_columns,
            label="Documents column",
            value=col_doc,
            interactive=(False if col_doc == "" else True),
            multiselect=False,
        ),
    )


def preprocess_input_data(
    file_paths: list[str], num_rows: int, progress=gr.Progress(track_tqdm=True)
):
    if not file_paths:
        raise gr.Error("Please provide an input file")

    data = {}
    total_chunks = 0

    for file_path in tqdm(file_paths, desc="Processing files", total=len(file_paths)):
        partitioned_file = partition(filename=file_path)
        chunks = [str(chunk) for chunk in chunk_by_title(partitioned_file)]
        data[file_path] = chunks
        total_chunks += len(chunks)
        if total_chunks >= num_rows:
            break

    dataframe = pd.DataFrame.from_records(
        [(k, v) for k, values in data.items() for v in values],
        columns=["filename", "chunks"],
    )
    col_doc = "chunks"

    return (
        dataframe,
        gr.Dropdown(
            choices=["chunks"],
            label="Documents column",
            value=col_doc,
            interactive=(False if col_doc == "" else True),
            multiselect=False,
        ),
    )