File size: 10,102 Bytes
0d14ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4af916
0d14ea5
d4af916
0d14ea5
d4af916
0d14ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4af916
0d14ea5
d4af916
0d14ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c54ccc3
0d14ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c54ccc3
0d14ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
c54ccc3
0d14ea5
 
 
 
 
3b7b628
0d14ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4af916
0d14ea5
 
d4af916
 
 
0d14ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2669f7
0d14ea5
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
from datasets import get_dataset_config_names, get_dataset_split_names
from distilabel.steps.tasks import (
    GenerateSentencePair,
    TextGeneration,
)

from synthetic_dataset_generator.constants import MAX_NUM_TOKENS
from synthetic_dataset_generator.pipelines.base import _get_llm, _get_llm_class

DEFAULT_DATASET_DESCRIPTIONS = [
    "A dataset to retrieve information from legal documents.",
    "A dataset to search for economical techniques.",
]

PROMPT_CREATION_PROMPT = """

You are an AI assistant specialized in designing retrieval-augmented generation (RAG) tasks for dataset generation.

Your task is to generate a well-structured and descriptive prompt based on the provided dataset description. Respond with only the generated prompt and nothing else.

The prompt should closely follow the style and structure of the example prompts below. Ensure that you include all relevant details from the dataset description.

Description: A dataset to retrieve information from legal documents.
Output: A dataset to retrieve information from a collection of legal documents related to the US law system and the status of contracts.

Description: A dataset to search for economical techniques.
Output: A dataset to search for economical techniques and strategies for the European market and the financial sector.

Description: A dataset covering FAQ questions for a tech company called Argilla that sells technology datasets within the open-source Natural Language Processing space.
Output: A dataset covering FAQ questions for a tech company called Argilla that sells technology datasets within the open-source Natural Language Processing space.

Description:
"""

SYSTEM_PROMPT_CHUCKS = """
You are a helpful and knowledgeable AI assistant. Your task is to generate concise and informative text chunks relevant to the given retrieval task.

Ensure the text chunks are:
- Focused and directly related to the retrieval task.
- Clear, truthful, and based on your general knowledge.

Do not include or reference the retrieval task itself in the generated chunks.
"""

CHUNKS_TEMPLATE = """You have been assigned to generate text chunks based on the following retrieval task: {{ task }}.

Provide only the text chunks without explaining your process or reasoning. Do not include any additional information. Do not indicate that it is a text chunk.

Ensure the chunks are concise, clear, and directly relevant to the task.

Use your general knowledge to create informative and precise outputs.
"""

SYSTEM_PROMPT_RAG = """
You are a helpful AI assistant. Your task is to answer the following question based on the provided document.

If the answer is not explicitly stated in the document, use your knowledge to provide the most relevant and accurate answer possible.

If you cannot answer the question based on the given information, state that clearly.
"""

RAG_TEMPLATE = """Document:
{{ context }}

Question: {{ question }}

Please provide a clear and concise answer to the question based on the information in the document:
""".rstrip()


def get_prompt_generator():
    generation_kwargs = {
        "temperature": 0.8,
        "max_new_tokens": MAX_NUM_TOKENS,
    }
    text_generator = TextGeneration(
        llm=_get_llm(generation_kwargs=generation_kwargs),
        system_prompt=PROMPT_CREATION_PROMPT,
        use_system_prompt=True,
    )

    text_generator.load()
    return text_generator


def get_chunks_generator(temperature: float, is_sample: bool):
    generation_kwargs = {
        "temperature": temperature,
        "max_new_tokens": MAX_NUM_TOKENS if is_sample else 256,
    }
    text_generator = TextGeneration(
        llm=_get_llm(generation_kwargs=generation_kwargs),
        system_prompt=SYSTEM_PROMPT_CHUCKS,
        template=CHUNKS_TEMPLATE,
        columns=["task"],
        use_system_prompt=True,
    )

    text_generator.load()
    return text_generator


def get_sentence_pair_generator(action: str, triplet: bool, temperature: float, is_sample: bool):
    generation_kwargs = {
        "temperature": temperature,
        "max_new_tokens": 256 if is_sample else MAX_NUM_TOKENS,
    }
    sentence_pair_generator = GenerateSentencePair(
        llm=_get_llm(generation_kwargs=generation_kwargs),
        triplet=triplet,
        action=action,
        hard_negative=True,
    )
    sentence_pair_generator.load()
    return sentence_pair_generator


def get_response_generator(temperature: float, is_sample: bool):
    generation_kwargs = {
        "temperature": temperature,
        "max_new_tokens": MAX_NUM_TOKENS if is_sample else 256,
    }
    text_generator = TextGeneration(
        llm=_get_llm(is_completion=True, generation_kwargs=generation_kwargs),
        system_prompt=SYSTEM_PROMPT_RAG,
        template=RAG_TEMPLATE,
        columns=["context", "question"],
        use_system_prompt=True,
    )

    text_generator.load()
    return text_generator


def generate_pipeline_code(
    repo_id: str,
    input_type: str,
    system_prompt: str,
    document_column: str,
    retrieval_reranking: list[str],
    num_rows: int = 10,
) -> str:
    if input_type == "dataset-input" and repo_id is not None:
        subset = get_dataset_config_names(repo_id)[0]
        split = get_dataset_split_names(repo_id, subset)[0]
    else:
        subset = "default"
        split = "train"
    retrieval = "Retrieval" in retrieval_reranking
    reranking = "Reranking" in retrieval_reranking
    base_code = f"""
# Requirements: `pip install distilabel[hf-inference-endpoints]`
{"import random" if input_type == "prompt-input" else ""}
from distilabel.models import {_get_llm_class()}
from distilabel.pipeline import Pipeline
from distilabel.steps import KeepColumns{", LoadDataFromDicts" if input_type != "dataset-input"  else ""}{", LoadDataFromHub" if input_type == "dataset-input" else ""}{", CombineOutputs" if retrieval and reranking else ""}
from distilabel.steps.tasks import GenerateSentencePair, TextGeneration {", GenerateTextRetrievalData" if input_type == "prompt-input" else ""}

SYSTEM_PROMPT_RAG = '''
You are a helpful AI assistant. Your task is to answer the following question based on the provided document.

If the answer is not explicitly stated in the document, use your knowledge to provide the most relevant and accurate answer possible.

If you cannot answer the question based on the given information, state that clearly.
'''

RAG_TEMPLATE = '''Document:
{{{{ filename }}}}

Question: {{{{ question }}}}

Please provide a clear and concise answer to the question based on the information in the document:
'''.rstrip()
"""

    if input_type == "file-input":
        base_code += """
data = process_and_chunk_files(files=[files])
"""

    if input_type == "prompt-input":
        pipeline = f"""
TASK_SYSTEM_PROMPT =  '''

{system_prompt}    
''' 

with Pipeline(name="rag") as pipeline:

    task_generator = LoadDataFromDicts(data=[{{"task": TASK_SYSTEM_PROMPT}}])

    sentence_similarity_generation = GenerateTextRetrievalData(
        llm={_get_llm_class()}.from_dict(
            {_get_llm().dump()}
        ),
        seed=random.randint(0, 2**32 - 1),
        query_type="common",
        difficulty="high school",
        clarity="clear",
        num_generations={num_rows},
        output_mappings={{"positive_document": "anchor"}},
    )

    keep_columns_prompt = KeepColumns(
        columns=["anchor"],
    )
    """
    else:
        pipeline = """
with Pipeline(name="rag") as pipeline:
"""
        if input_type == "file-input":
            pipeline += """
    load_the_dataset = LoadDataFromDicts(
        data = data,
    )
    """
        else:
            pipeline += f"""
    load_the_dataset = LoadDataFromHub(
        repo_id="{repo_id}",
        config="{subset}",
        split="{split}",
        num_examples={num_rows},
        batch_size=2,
        output_mappings={{'{document_column}': 'anchor'}}
    )
    """

    pipeline += f"""
    generate_retrieval_pairs = GenerateSentencePair(
        triplet={str(retrieval)},
        hard_negative=True,
        action="query",
        llm={_get_llm_class()}.from_dict(
            {_get_llm().dump()}
        ),
        output_mappings={{"positive": "positive_retrieval"{', "negative": "negative_retrieval"' if retrieval else ""}}},
        input_batch_size=10,
    )
    """

    if reranking:
        pipeline += f"""
    generate_reranking_pairs = GenerateSentencePair(
        triplet=True,
        hard_negative=True,
        action="semantically-similar",
        llm={_get_llm_class()}.from_dict(
            {_get_llm().dump()}
        ),
        input_batch_size=10,
        output_mappings={{"positive": "positive_reranking", "negative": "negative_reranking"}},
    )
    
    combine_outputs = CombineOutputs()
    """

    pipeline += f"""
    generate_response = TextGeneration(
        llm={_get_llm_class()}.from_dict(
            {_get_llm().dump()}
        ),
        system_prompt=SYSTEM_PROMPT_RAG,
        template=RAG_TEMPLATE,
        columns=["filename", "question"],
        use_system_prompt=True,
        input_mappings={{"filename": "anchor", "question": "positive_retrieval"}},
        output_mappings={{"generation": "response"}},
    )
    
    keep_columns = KeepColumns(
        columns=["anchor", "positive_retrieval", "response"{', "negative_retrieval"' if retrieval else ""}{', "positive_reranking", "negative_reranking"' if reranking else ""}],
    )
    """

    pipeline_steps = (
        "[generate_retrieval_pairs, generate_reranking_pairs] >> combine_outputs >> generate_response >> keep_columns"
        if reranking
        else "generate_retrieval_pairs >> generate_response >> keep_columns"
    )

    pipeline += """
    task_generator >> sentence_similarity_generation >> keep_columns_prompt >> {pipeline_steps}
""".format(pipeline_steps=pipeline_steps) if input_type == "prompt-input" else """
    load_the_dataset >> {pipeline_steps}
""".format(pipeline_steps=pipeline_steps)

    pipeline += """
    if __name__ == "__main__":
        distiset = pipeline.run()
    """

    return base_code + pipeline