File size: 10,102 Bytes
0d14ea5 d4af916 0d14ea5 d4af916 0d14ea5 d4af916 0d14ea5 d4af916 0d14ea5 d4af916 0d14ea5 c54ccc3 0d14ea5 c54ccc3 0d14ea5 c54ccc3 0d14ea5 3b7b628 0d14ea5 d4af916 0d14ea5 d4af916 0d14ea5 b2669f7 0d14ea5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
from datasets import get_dataset_config_names, get_dataset_split_names
from distilabel.steps.tasks import (
GenerateSentencePair,
TextGeneration,
)
from synthetic_dataset_generator.constants import MAX_NUM_TOKENS
from synthetic_dataset_generator.pipelines.base import _get_llm, _get_llm_class
DEFAULT_DATASET_DESCRIPTIONS = [
"A dataset to retrieve information from legal documents.",
"A dataset to search for economical techniques.",
]
PROMPT_CREATION_PROMPT = """
You are an AI assistant specialized in designing retrieval-augmented generation (RAG) tasks for dataset generation.
Your task is to generate a well-structured and descriptive prompt based on the provided dataset description. Respond with only the generated prompt and nothing else.
The prompt should closely follow the style and structure of the example prompts below. Ensure that you include all relevant details from the dataset description.
Description: A dataset to retrieve information from legal documents.
Output: A dataset to retrieve information from a collection of legal documents related to the US law system and the status of contracts.
Description: A dataset to search for economical techniques.
Output: A dataset to search for economical techniques and strategies for the European market and the financial sector.
Description: A dataset covering FAQ questions for a tech company called Argilla that sells technology datasets within the open-source Natural Language Processing space.
Output: A dataset covering FAQ questions for a tech company called Argilla that sells technology datasets within the open-source Natural Language Processing space.
Description:
"""
SYSTEM_PROMPT_CHUCKS = """
You are a helpful and knowledgeable AI assistant. Your task is to generate concise and informative text chunks relevant to the given retrieval task.
Ensure the text chunks are:
- Focused and directly related to the retrieval task.
- Clear, truthful, and based on your general knowledge.
Do not include or reference the retrieval task itself in the generated chunks.
"""
CHUNKS_TEMPLATE = """You have been assigned to generate text chunks based on the following retrieval task: {{ task }}.
Provide only the text chunks without explaining your process or reasoning. Do not include any additional information. Do not indicate that it is a text chunk.
Ensure the chunks are concise, clear, and directly relevant to the task.
Use your general knowledge to create informative and precise outputs.
"""
SYSTEM_PROMPT_RAG = """
You are a helpful AI assistant. Your task is to answer the following question based on the provided document.
If the answer is not explicitly stated in the document, use your knowledge to provide the most relevant and accurate answer possible.
If you cannot answer the question based on the given information, state that clearly.
"""
RAG_TEMPLATE = """Document:
{{ context }}
Question: {{ question }}
Please provide a clear and concise answer to the question based on the information in the document:
""".rstrip()
def get_prompt_generator():
generation_kwargs = {
"temperature": 0.8,
"max_new_tokens": MAX_NUM_TOKENS,
}
text_generator = TextGeneration(
llm=_get_llm(generation_kwargs=generation_kwargs),
system_prompt=PROMPT_CREATION_PROMPT,
use_system_prompt=True,
)
text_generator.load()
return text_generator
def get_chunks_generator(temperature: float, is_sample: bool):
generation_kwargs = {
"temperature": temperature,
"max_new_tokens": MAX_NUM_TOKENS if is_sample else 256,
}
text_generator = TextGeneration(
llm=_get_llm(generation_kwargs=generation_kwargs),
system_prompt=SYSTEM_PROMPT_CHUCKS,
template=CHUNKS_TEMPLATE,
columns=["task"],
use_system_prompt=True,
)
text_generator.load()
return text_generator
def get_sentence_pair_generator(action: str, triplet: bool, temperature: float, is_sample: bool):
generation_kwargs = {
"temperature": temperature,
"max_new_tokens": 256 if is_sample else MAX_NUM_TOKENS,
}
sentence_pair_generator = GenerateSentencePair(
llm=_get_llm(generation_kwargs=generation_kwargs),
triplet=triplet,
action=action,
hard_negative=True,
)
sentence_pair_generator.load()
return sentence_pair_generator
def get_response_generator(temperature: float, is_sample: bool):
generation_kwargs = {
"temperature": temperature,
"max_new_tokens": MAX_NUM_TOKENS if is_sample else 256,
}
text_generator = TextGeneration(
llm=_get_llm(is_completion=True, generation_kwargs=generation_kwargs),
system_prompt=SYSTEM_PROMPT_RAG,
template=RAG_TEMPLATE,
columns=["context", "question"],
use_system_prompt=True,
)
text_generator.load()
return text_generator
def generate_pipeline_code(
repo_id: str,
input_type: str,
system_prompt: str,
document_column: str,
retrieval_reranking: list[str],
num_rows: int = 10,
) -> str:
if input_type == "dataset-input" and repo_id is not None:
subset = get_dataset_config_names(repo_id)[0]
split = get_dataset_split_names(repo_id, subset)[0]
else:
subset = "default"
split = "train"
retrieval = "Retrieval" in retrieval_reranking
reranking = "Reranking" in retrieval_reranking
base_code = f"""
# Requirements: `pip install distilabel[hf-inference-endpoints]`
{"import random" if input_type == "prompt-input" else ""}
from distilabel.models import {_get_llm_class()}
from distilabel.pipeline import Pipeline
from distilabel.steps import KeepColumns{", LoadDataFromDicts" if input_type != "dataset-input" else ""}{", LoadDataFromHub" if input_type == "dataset-input" else ""}{", CombineOutputs" if retrieval and reranking else ""}
from distilabel.steps.tasks import GenerateSentencePair, TextGeneration {", GenerateTextRetrievalData" if input_type == "prompt-input" else ""}
SYSTEM_PROMPT_RAG = '''
You are a helpful AI assistant. Your task is to answer the following question based on the provided document.
If the answer is not explicitly stated in the document, use your knowledge to provide the most relevant and accurate answer possible.
If you cannot answer the question based on the given information, state that clearly.
'''
RAG_TEMPLATE = '''Document:
{{{{ filename }}}}
Question: {{{{ question }}}}
Please provide a clear and concise answer to the question based on the information in the document:
'''.rstrip()
"""
if input_type == "file-input":
base_code += """
data = process_and_chunk_files(files=[files])
"""
if input_type == "prompt-input":
pipeline = f"""
TASK_SYSTEM_PROMPT = '''
{system_prompt}
'''
with Pipeline(name="rag") as pipeline:
task_generator = LoadDataFromDicts(data=[{{"task": TASK_SYSTEM_PROMPT}}])
sentence_similarity_generation = GenerateTextRetrievalData(
llm={_get_llm_class()}.from_dict(
{_get_llm().dump()}
),
seed=random.randint(0, 2**32 - 1),
query_type="common",
difficulty="high school",
clarity="clear",
num_generations={num_rows},
output_mappings={{"positive_document": "anchor"}},
)
keep_columns_prompt = KeepColumns(
columns=["anchor"],
)
"""
else:
pipeline = """
with Pipeline(name="rag") as pipeline:
"""
if input_type == "file-input":
pipeline += """
load_the_dataset = LoadDataFromDicts(
data = data,
)
"""
else:
pipeline += f"""
load_the_dataset = LoadDataFromHub(
repo_id="{repo_id}",
config="{subset}",
split="{split}",
num_examples={num_rows},
batch_size=2,
output_mappings={{'{document_column}': 'anchor'}}
)
"""
pipeline += f"""
generate_retrieval_pairs = GenerateSentencePair(
triplet={str(retrieval)},
hard_negative=True,
action="query",
llm={_get_llm_class()}.from_dict(
{_get_llm().dump()}
),
output_mappings={{"positive": "positive_retrieval"{', "negative": "negative_retrieval"' if retrieval else ""}}},
input_batch_size=10,
)
"""
if reranking:
pipeline += f"""
generate_reranking_pairs = GenerateSentencePair(
triplet=True,
hard_negative=True,
action="semantically-similar",
llm={_get_llm_class()}.from_dict(
{_get_llm().dump()}
),
input_batch_size=10,
output_mappings={{"positive": "positive_reranking", "negative": "negative_reranking"}},
)
combine_outputs = CombineOutputs()
"""
pipeline += f"""
generate_response = TextGeneration(
llm={_get_llm_class()}.from_dict(
{_get_llm().dump()}
),
system_prompt=SYSTEM_PROMPT_RAG,
template=RAG_TEMPLATE,
columns=["filename", "question"],
use_system_prompt=True,
input_mappings={{"filename": "anchor", "question": "positive_retrieval"}},
output_mappings={{"generation": "response"}},
)
keep_columns = KeepColumns(
columns=["anchor", "positive_retrieval", "response"{', "negative_retrieval"' if retrieval else ""}{', "positive_reranking", "negative_reranking"' if reranking else ""}],
)
"""
pipeline_steps = (
"[generate_retrieval_pairs, generate_reranking_pairs] >> combine_outputs >> generate_response >> keep_columns"
if reranking
else "generate_retrieval_pairs >> generate_response >> keep_columns"
)
pipeline += """
task_generator >> sentence_similarity_generation >> keep_columns_prompt >> {pipeline_steps}
""".format(pipeline_steps=pipeline_steps) if input_type == "prompt-input" else """
load_the_dataset >> {pipeline_steps}
""".format(pipeline_steps=pipeline_steps)
pipeline += """
if __name__ == "__main__":
distiset = pipeline.run()
"""
return base_code + pipeline
|