|
import json |
|
import os |
|
from typing import List, Optional, Union |
|
|
|
import argilla as rg |
|
import gradio as gr |
|
import numpy as np |
|
import pandas as pd |
|
from gradio.oauth import ( |
|
OAUTH_CLIENT_ID, |
|
OAUTH_CLIENT_SECRET, |
|
OAUTH_SCOPES, |
|
OPENID_PROVIDER_URL, |
|
get_space, |
|
) |
|
from huggingface_hub import whoami |
|
from jinja2 import Environment, meta |
|
|
|
_LOGGED_OUT_CSS = ".main_ui_logged_out{opacity: 0.3; pointer-events: none}" |
|
|
|
HF_TOKENS = [os.getenv("HF_TOKEN")] + [os.getenv(f"HF_TOKEN_{i}") for i in range(1, 10)] |
|
HF_TOKENS = [token for token in HF_TOKENS if token] |
|
|
|
_CHECK_IF_SPACE_IS_SET = ( |
|
all( |
|
[ |
|
OAUTH_CLIENT_ID, |
|
OAUTH_CLIENT_SECRET, |
|
OAUTH_SCOPES, |
|
OPENID_PROVIDER_URL, |
|
] |
|
) |
|
or get_space() is None |
|
) |
|
|
|
if _CHECK_IF_SPACE_IS_SET: |
|
from gradio.oauth import OAuthToken |
|
else: |
|
OAuthToken = str |
|
|
|
|
|
def get_login_button(): |
|
return gr.LoginButton(value="Sign in!", size="sm", scale=2).activate() |
|
|
|
|
|
def get_duplicate_button(): |
|
if get_space() is not None: |
|
return gr.DuplicateButton(size="lg") |
|
|
|
|
|
def list_orgs(oauth_token: OAuthToken = None): |
|
try: |
|
if oauth_token is None: |
|
return [] |
|
data = whoami(oauth_token.token) |
|
if data["auth"]["type"] == "oauth": |
|
organizations = [data["name"]] + [org["name"] for org in data["orgs"]] |
|
elif data["auth"]["type"] == "access_token": |
|
organizations = [org["name"] for org in data["orgs"]] |
|
else: |
|
organizations = [ |
|
entry["entity"]["name"] |
|
for entry in data["auth"]["accessToken"]["fineGrained"]["scoped"] |
|
if "repo.write" in entry["permissions"] |
|
] |
|
organizations = [org for org in organizations if org != data["name"]] |
|
organizations = [data["name"]] + organizations |
|
except Exception as e: |
|
raise gr.Error( |
|
f"Failed to get organizations: {e}. See if you are logged and connected: https://huggingface.co/settings/connected-applications." |
|
) |
|
return organizations |
|
|
|
|
|
def get_org_dropdown(oauth_token: OAuthToken = None): |
|
if oauth_token is not None: |
|
orgs = list_orgs(oauth_token) |
|
else: |
|
orgs = [] |
|
return gr.Dropdown( |
|
label="Organization", |
|
choices=orgs, |
|
value=orgs[0] if orgs else None, |
|
allow_custom_value=True, |
|
interactive=True, |
|
) |
|
|
|
|
|
def get_token(oauth_token: OAuthToken = None): |
|
if oauth_token: |
|
return oauth_token.token |
|
else: |
|
return "" |
|
|
|
|
|
def swap_visibility(oauth_token: Optional[OAuthToken] = None): |
|
if oauth_token: |
|
return gr.update(elem_classes=["main_ui_logged_in"]) |
|
else: |
|
return gr.update(elem_classes=["main_ui_logged_out"]) |
|
|
|
|
|
def get_base_app(): |
|
with gr.Blocks( |
|
title="🧬 Synthetic Data Generator", |
|
head="🧬 Synthetic Data Generator", |
|
css=_LOGGED_OUT_CSS, |
|
) as app: |
|
with gr.Row(): |
|
gr.Markdown( |
|
"Want to run this locally or with other LLMs? Take a look at the FAQ tab. distilabel Synthetic Data Generator is free, we use the authentication token to push the dataset to the Hugging Face Hub and not for data generation." |
|
) |
|
with gr.Row(): |
|
gr.Column() |
|
get_login_button() |
|
gr.Column() |
|
|
|
gr.Markdown("## Iterate on a sample dataset") |
|
with gr.Column() as main_ui: |
|
pass |
|
|
|
return app |
|
|
|
|
|
def get_argilla_client() -> Union[rg.Argilla, None]: |
|
try: |
|
api_url = os.getenv("ARGILLA_API_URL_SDG_REVIEWER") |
|
api_key = os.getenv("ARGILLA_API_KEY_SDG_REVIEWER") |
|
if api_url is None or api_key is None: |
|
api_url = os.getenv("ARGILLA_API_URL") |
|
api_key = os.getenv("ARGILLA_API_KEY") |
|
return rg.Argilla( |
|
api_url=api_url, |
|
api_key=api_key, |
|
) |
|
except Exception: |
|
return None |
|
|
|
def get_preprocess_labels(labels: Optional[List[str]]) -> List[str]: |
|
return list(set([label.lower().strip() for label in labels])) if labels else [] |
|
|
|
|
|
def column_to_list(dataframe: pd.DataFrame, column_name: str) -> List[str]: |
|
if column_name in dataframe.columns: |
|
return dataframe[column_name].tolist() |
|
else: |
|
raise ValueError(f"Column '{column_name}' does not exist.") |
|
|
|
|
|
def process_columns( |
|
dataframe, |
|
instruction_column: str, |
|
response_columns: Union[str, List[str]], |
|
) -> List[dict]: |
|
instruction_column = [instruction_column] |
|
if isinstance(response_columns, str): |
|
response_columns = [response_columns] |
|
|
|
data = [] |
|
for _, row in dataframe.iterrows(): |
|
instruction = "" |
|
for col in instruction_column: |
|
value = row[col] |
|
if isinstance(value, (list, np.ndarray)): |
|
user_contents = [d["content"] for d in value if d.get("role") == "user"] |
|
if user_contents: |
|
instruction = user_contents[-1] |
|
elif isinstance(value, str): |
|
try: |
|
parsed_message = json.loads(value) |
|
user_contents = [ |
|
d["content"] for d in parsed_message if d.get("role") == "user" |
|
] |
|
if user_contents: |
|
instruction = user_contents[-1] |
|
except json.JSONDecodeError: |
|
instruction = value |
|
else: |
|
instruction = "" |
|
|
|
generations = [] |
|
for col in response_columns: |
|
value = row[col] |
|
if isinstance(value, (list, np.ndarray)): |
|
if all(isinstance(item, dict) and "role" in item for item in value): |
|
assistant_contents = [ |
|
d["content"] for d in value if d.get("role") == "assistant" |
|
] |
|
if assistant_contents: |
|
generations.append(assistant_contents[-1]) |
|
else: |
|
generations.extend(value) |
|
elif isinstance(value, str): |
|
try: |
|
parsed_message = json.loads(value) |
|
assistant_contents = [ |
|
d["content"] |
|
for d in parsed_message |
|
if d.get("role") == "assistant" |
|
] |
|
if assistant_contents: |
|
generations.append(assistant_contents[-1]) |
|
except json.JSONDecodeError: |
|
generations.append(value) |
|
else: |
|
pass |
|
|
|
data.append({"instruction": instruction, "generations": generations}) |
|
|
|
return data |
|
|
|
|
|
def extract_column_names(prompt_template: str) -> List[str]: |
|
env = Environment() |
|
parsed_content = env.parse(prompt_template) |
|
variables = meta.find_undeclared_variables(parsed_content) |
|
return list(variables) |
|
|
|
|
|
def pad_or_truncate_list(lst, target_length): |
|
lst = lst or [] |
|
lst_length = len(lst) |
|
if lst_length >= target_length: |
|
return lst[-target_length:] |
|
else: |
|
return lst + [None] * (target_length - lst_length) |
|
|