|
import os |
|
import warnings |
|
|
|
import argilla as rg |
|
|
|
|
|
TEXTCAT_TASK = "text_classification" |
|
SFT_TASK = "supervised_fine_tuning" |
|
|
|
|
|
HF_TOKEN = os.getenv("HF_TOKEN") |
|
if not HF_TOKEN: |
|
raise ValueError( |
|
"HF_TOKEN is not set. Ensure you have set the HF_TOKEN environment variable that has access to the Hugging Face Hub repositories and Inference Endpoints." |
|
) |
|
|
|
|
|
MAX_NUM_TOKENS = int(os.getenv("MAX_NUM_TOKENS", 2048)) |
|
MAX_NUM_ROWS: str | int = int(os.getenv("MAX_NUM_ROWS", 1000)) |
|
DEFAULT_BATCH_SIZE = int(os.getenv("DEFAULT_BATCH_SIZE", 5)) |
|
MODEL = os.getenv("MODEL", "meta-llama/Meta-Llama-3.1-8B-Instruct") |
|
BASE_URL = os.getenv("BASE_URL", default=None) |
|
|
|
_API_KEY = os.getenv("API_KEY") |
|
if _API_KEY: |
|
API_KEYS = [_API_KEY] |
|
else: |
|
API_KEYS = [os.getenv("HF_TOKEN")] + [ |
|
os.getenv(f"HF_TOKEN_{i}") for i in range(1, 10) |
|
] |
|
API_KEYS = [token for token in API_KEYS if token] |
|
|
|
|
|
SFT_AVAILABLE = False |
|
llama_options = ["llama3", "llama-3", "llama 3"] |
|
qwen_options = ["qwen2", "qwen-2", "qwen 2"] |
|
if os.getenv("MAGPIE_PRE_QUERY_TEMPLATE"): |
|
SFT_AVAILABLE = True |
|
passed_pre_query_template = os.getenv("MAGPIE_PRE_QUERY_TEMPLATE") |
|
if passed_pre_query_template.lower() in llama_options: |
|
MAGPIE_PRE_QUERY_TEMPLATE = "llama3" |
|
elif passed_pre_query_template.lower() in qwen_options: |
|
MAGPIE_PRE_QUERY_TEMPLATE = "qwen2" |
|
else: |
|
MAGPIE_PRE_QUERY_TEMPLATE = passed_pre_query_template |
|
elif MODEL.lower() in llama_options or any( |
|
option in MODEL.lower() for option in llama_options |
|
): |
|
SFT_AVAILABLE = True |
|
MAGPIE_PRE_QUERY_TEMPLATE = "llama3" |
|
elif MODEL.lower() in qwen_options or any( |
|
option in MODEL.lower() for option in qwen_options |
|
): |
|
SFT_AVAILABLE = True |
|
MAGPIE_PRE_QUERY_TEMPLATE = "qwen2" |
|
|
|
if BASE_URL: |
|
SFT_AVAILABLE = False |
|
|
|
if not SFT_AVAILABLE: |
|
warnings.warn( |
|
message="`SFT_AVAILABLE` is set to `False`. Use Hugging Face Inference Endpoints to generate chat data." |
|
) |
|
MAGPIE_PRE_QUERY_TEMPLATE = None |
|
|
|
|
|
STATIC_EMBEDDING_MODEL = "minishlab/potion-base-8M" |
|
|
|
|
|
ARGILLA_API_URL = os.getenv("ARGILLA_API_URL") |
|
ARGILLA_API_KEY = os.getenv("ARGILLA_API_KEY") |
|
if ARGILLA_API_URL is None or ARGILLA_API_KEY is None: |
|
ARGILLA_API_URL = os.getenv("ARGILLA_API_URL_SDG_REVIEWER") |
|
ARGILLA_API_KEY = os.getenv("ARGILLA_API_KEY_SDG_REVIEWER") |
|
|
|
if not ARGILLA_API_URL or not ARGILLA_API_KEY: |
|
warnings.warn("ARGILLA_API_URL or ARGILLA_API_KEY is not set or is empty") |
|
argilla_client = None |
|
else: |
|
argilla_client = rg.Argilla( |
|
api_url=ARGILLA_API_URL, |
|
api_key=ARGILLA_API_KEY, |
|
) |
|
|