davidberenstein1957's picture
refactor: re-usable gradio component
54d4d8d
raw
history blame
16.9 kB
import ast
from typing import Dict, List, Union
import argilla as rg
import gradio as gr
import pandas as pd
from datasets import Dataset
from distilabel.distiset import Distiset
from huggingface_hub import HfApi
from src.distilabel_dataset_generator.apps.base import (
get_argilla_client,
get_main_ui,
get_pipeline_code_ui,
hide_success_message,
push_pipeline_code_to_hub,
show_success_message_argilla,
show_success_message_hub,
validate_argilla_user_workspace_dataset,
)
from src.distilabel_dataset_generator.apps.base import (
push_dataset_to_hub as push_to_hub_base,
)
from src.distilabel_dataset_generator.pipelines.base import (
DEFAULT_BATCH_SIZE,
)
from src.distilabel_dataset_generator.pipelines.embeddings import (
get_embeddings,
get_sentence_embedding_dimensions,
)
from src.distilabel_dataset_generator.pipelines.sft import (
DEFAULT_DATASET_DESCRIPTIONS,
DEFAULT_DATASETS,
DEFAULT_SYSTEM_PROMPTS,
PROMPT_CREATION_PROMPT,
generate_pipeline_code,
get_magpie_generator,
get_prompt_generator,
get_response_generator,
)
def convert_dataframe_messages(dataframe: pd.DataFrame) -> pd.DataFrame:
def convert_to_list_of_dicts(messages: str) -> List[Dict[str, str]]:
return ast.literal_eval(
messages.replace("'user'}", "'user'},")
.replace("'system'}", "'system'},")
.replace("'assistant'}", "'assistant'},")
)
if "messages" in dataframe.columns:
dataframe["messages"] = dataframe["messages"].apply(
lambda x: convert_to_list_of_dicts(x) if isinstance(x, str) else x
)
return dataframe
def push_dataset_to_hub(
dataframe: pd.DataFrame,
private: bool = True,
org_name: str = None,
repo_name: str = None,
oauth_token: Union[gr.OAuthToken, None] = None,
progress=gr.Progress(),
):
original_dataframe = dataframe.copy(deep=True)
dataframe = convert_dataframe_messages(dataframe)
push_to_hub_base(dataframe, private, org_name, repo_name, oauth_token, progress)
return original_dataframe
def push_dataset_to_argilla(
dataframe: pd.DataFrame,
dataset_name: str,
oauth_token: Union[gr.OAuthToken, None] = None,
progress=gr.Progress(),
) -> pd.DataFrame:
original_dataframe = dataframe.copy(deep=True)
dataframe = convert_dataframe_messages(dataframe)
try:
progress(0.1, desc="Setting up user and workspace")
client = get_argilla_client()
hf_user = HfApi().whoami(token=oauth_token.token)["name"]
if "messages" in dataframe.columns:
settings = rg.Settings(
fields=[
rg.ChatField(
name="messages",
description="The messages in the conversation",
title="Messages",
),
],
questions=[
rg.RatingQuestion(
name="rating",
title="Rating",
description="The rating of the conversation",
values=list(range(1, 6)),
),
],
metadata=[
rg.IntegerMetadataProperty(
name="user_message_length", title="User Message Length"
),
rg.IntegerMetadataProperty(
name="assistant_message_length",
title="Assistant Message Length",
),
],
vectors=[
rg.VectorField(
name="messages_embeddings",
dimensions=get_sentence_embedding_dimensions(),
)
],
guidelines="Please review the conversation and provide a score for the assistant's response.",
)
dataframe["user_message_length"] = dataframe["messages"].apply(
lambda x: sum([len(y["content"]) for y in x if y["role"] == "user"])
)
dataframe["assistant_message_length"] = dataframe["messages"].apply(
lambda x: sum(
[len(y["content"]) for y in x if y["role"] == "assistant"]
)
)
dataframe["messages_embeddings"] = get_embeddings(
dataframe["messages"].apply(
lambda x: " ".join([y["content"] for y in x])
)
)
else:
settings = rg.Settings(
fields=[
rg.TextField(
name="system_prompt",
title="System Prompt",
description="The system prompt used for the conversation",
required=False,
),
rg.TextField(
name="prompt",
title="Prompt",
description="The prompt used for the conversation",
),
rg.TextField(
name="completion",
title="Completion",
description="The completion from the assistant",
),
],
questions=[
rg.RatingQuestion(
name="rating",
title="Rating",
description="The rating of the conversation",
values=list(range(1, 6)),
),
],
metadata=[
rg.IntegerMetadataProperty(
name="prompt_length", title="Prompt Length"
),
rg.IntegerMetadataProperty(
name="completion_length", title="Completion Length"
),
],
vectors=[
rg.VectorField(
name="prompt_embeddings",
dimensions=get_sentence_embedding_dimensions(),
)
],
guidelines="Please review the conversation and correct the prompt and completion where needed.",
)
dataframe["prompt_length"] = dataframe["prompt"].apply(len)
dataframe["completion_length"] = dataframe["completion"].apply(len)
dataframe["prompt_embeddings"] = get_embeddings(dataframe["prompt"])
progress(0.5, desc="Creating dataset")
rg_dataset = client.datasets(name=dataset_name, workspace=hf_user)
if rg_dataset is None:
rg_dataset = rg.Dataset(
name=dataset_name,
workspace=hf_user,
settings=settings,
client=client,
)
rg_dataset = rg_dataset.create()
progress(0.7, desc="Pushing dataset to Argilla")
hf_dataset = Dataset.from_pandas(dataframe)
rg_dataset.records.log(records=hf_dataset)
progress(1.0, desc="Dataset pushed to Argilla")
except Exception as e:
raise gr.Error(f"Error pushing dataset to Argilla: {e}")
return original_dataframe
def generate_system_prompt(dataset_description, progress=gr.Progress()):
progress(0.0, desc="Generating system prompt")
if dataset_description in DEFAULT_DATASET_DESCRIPTIONS:
index = DEFAULT_DATASET_DESCRIPTIONS.index(dataset_description)
if index < len(DEFAULT_SYSTEM_PROMPTS):
return DEFAULT_SYSTEM_PROMPTS[index]
progress(0.3, desc="Initializing text generation")
generate_description = get_prompt_generator()
progress(0.7, desc="Generating system prompt")
result = next(
generate_description.process(
[
{
"system_prompt": PROMPT_CREATION_PROMPT,
"instruction": dataset_description,
}
]
)
)[0]["generation"]
progress(1.0, desc="System prompt generated")
return result
def generate_dataset(
system_prompt: str,
num_turns: int = 1,
num_rows: int = 5,
is_sample: bool = False,
progress=gr.Progress(),
) -> pd.DataFrame:
progress(0.0, desc="(1/2) Generating instructions")
magpie_generator = get_magpie_generator(
num_turns, num_rows, system_prompt, is_sample
)
response_generator = get_response_generator(num_turns, system_prompt, is_sample)
total_steps: int = num_rows * 2
batch_size = DEFAULT_BATCH_SIZE
# create instructions
n_processed = 0
magpie_results = []
while n_processed < num_rows:
progress(
0.5 * n_processed / num_rows,
total=total_steps,
desc="(1/2) Generating instructions",
)
remaining_rows = num_rows - n_processed
batch_size = min(batch_size, remaining_rows)
inputs = [{"system_prompt": system_prompt} for _ in range(batch_size)]
batch = list(magpie_generator.process(inputs=inputs))
magpie_results.extend(batch[0])
n_processed += batch_size
progress(0.5, desc="(1/2) Generating instructions")
# generate responses
n_processed = 0
response_results = []
if num_turns == 1:
while n_processed < num_rows:
progress(
0.5 + 0.5 * n_processed / num_rows,
total=total_steps,
desc="(2/2) Generating responses",
)
batch = magpie_results[n_processed : n_processed + batch_size]
responses = list(response_generator.process(inputs=batch))
response_results.extend(responses[0])
n_processed += batch_size
for result in response_results:
result["prompt"] = result["instruction"]
result["completion"] = result["generation"]
result["system_prompt"] = system_prompt
else:
for result in magpie_results:
result["conversation"].insert(
0, {"role": "system", "content": system_prompt}
)
result["messages"] = result["conversation"]
while n_processed < num_rows:
progress(
0.5 + 0.5 * n_processed / num_rows,
total=total_steps,
desc="(2/2) Generating responses",
)
batch = magpie_results[n_processed : n_processed + batch_size]
responses = list(response_generator.process(inputs=batch))
response_results.extend(responses[0])
n_processed += batch_size
for result in response_results:
result["messages"].append(
{"role": "assistant", "content": result["generation"]}
)
progress(
1,
total=total_steps,
desc="(2/2) Generating responses",
)
# create distiset
distiset_results = []
for result in response_results:
record = {}
for relevant_keys in [
"messages",
"prompt",
"completion",
"model_name",
"system_prompt",
]:
if relevant_keys in result:
record[relevant_keys] = result[relevant_keys]
distiset_results.append(record)
distiset = Distiset(
{
"default": Dataset.from_list(distiset_results),
}
)
# If not pushing to hub generate the dataset directly
distiset = distiset["default"]
if num_turns == 1:
outputs = distiset.to_pandas()[["system_prompt", "prompt", "completion"]]
else:
outputs = distiset.to_pandas()[["messages"]]
dataframe = pd.DataFrame(outputs)
progress(1.0, desc="Dataset generation completed")
return dataframe
(
app,
main_ui,
custom_input_ui,
dataset_description,
examples,
btn_generate_system_prompt,
system_prompt,
sample_dataset,
btn_generate_sample_dataset,
dataset_name,
add_to_existing_dataset,
btn_generate_full_dataset_copy,
btn_generate_and_push_to_argilla,
btn_push_to_argilla,
org_name,
repo_name,
private,
btn_generate_full_dataset,
btn_generate_and_push_to_hub,
btn_push_to_hub,
final_dataset,
success_message,
) = get_main_ui(
default_dataset_descriptions=DEFAULT_DATASET_DESCRIPTIONS,
default_system_prompts=DEFAULT_SYSTEM_PROMPTS,
default_datasets=DEFAULT_DATASETS,
fn_generate_system_prompt=generate_system_prompt,
fn_generate_dataset=generate_dataset,
)
with app:
with main_ui:
with custom_input_ui:
num_turns = gr.Number(
value=1,
label="Number of turns in the conversation",
minimum=1,
maximum=4,
step=1,
info="Choose between 1 (single turn with 'instruction-response' columns) and 2-4 (multi-turn conversation with a 'messages' column).",
)
num_rows = gr.Number(
value=10,
label="Number of rows in the dataset",
minimum=1,
maximum=500,
info="The number of rows in the dataset. Note that you are able to generate more rows at once but that this will take time.",
)
pipeline_code = get_pipeline_code_ui(
generate_pipeline_code(system_prompt.value, num_turns.value, num_rows.value)
)
# define app triggers
gr.on(
triggers=[
btn_generate_full_dataset.click,
btn_generate_full_dataset_copy.click,
],
fn=hide_success_message,
outputs=[success_message],
).then(
fn=generate_dataset,
inputs=[system_prompt, num_turns, num_rows],
outputs=[final_dataset],
show_progress=True,
)
btn_generate_and_push_to_argilla.click(
fn=validate_argilla_user_workspace_dataset,
inputs=[dataset_name, final_dataset, add_to_existing_dataset],
outputs=[final_dataset],
show_progress=True,
).success(
fn=hide_success_message,
outputs=[success_message],
).success(
fn=generate_dataset,
inputs=[system_prompt, num_turns, num_rows],
outputs=[final_dataset],
show_progress=True,
).success(
fn=push_dataset_to_argilla,
inputs=[final_dataset, dataset_name],
outputs=[final_dataset],
show_progress=True,
).success(
fn=show_success_message_argilla,
inputs=[],
outputs=[success_message],
)
btn_generate_and_push_to_hub.click(
fn=hide_success_message,
outputs=[success_message],
).then(
fn=generate_dataset,
inputs=[system_prompt, num_turns, num_rows],
outputs=[final_dataset],
show_progress=True,
).then(
fn=push_dataset_to_hub,
inputs=[final_dataset, private, org_name, repo_name],
outputs=[final_dataset],
show_progress=True,
).then(
fn=push_pipeline_code_to_hub,
inputs=[pipeline_code, org_name, repo_name],
outputs=[],
show_progress=True,
).success(
fn=show_success_message_hub,
inputs=[org_name, repo_name],
outputs=[success_message],
)
btn_push_to_hub.click(
fn=hide_success_message,
outputs=[success_message],
).then(
fn=push_dataset_to_hub,
inputs=[final_dataset, private, org_name, repo_name],
outputs=[final_dataset],
show_progress=True,
).then(
fn=push_pipeline_code_to_hub,
inputs=[pipeline_code, org_name, repo_name],
outputs=[],
show_progress=True,
).success(
fn=show_success_message_hub,
inputs=[org_name, repo_name],
outputs=[success_message],
)
btn_push_to_argilla.click(
fn=hide_success_message,
outputs=[success_message],
).success(
fn=validate_argilla_user_workspace_dataset,
inputs=[dataset_name, final_dataset, add_to_existing_dataset],
outputs=[final_dataset],
show_progress=True,
).success(
fn=push_dataset_to_argilla,
inputs=[final_dataset, dataset_name],
outputs=[final_dataset],
show_progress=True,
).success(
fn=show_success_message_argilla,
inputs=[],
outputs=[success_message],
)
system_prompt.change(
fn=generate_pipeline_code,
inputs=[system_prompt, num_turns, num_rows],
outputs=[pipeline_code],
)
num_turns.change(
fn=generate_pipeline_code,
inputs=[system_prompt, num_turns, num_rows],
outputs=[pipeline_code],
)
num_rows.change(
fn=generate_pipeline_code,
inputs=[system_prompt, num_turns, num_rows],
outputs=[pipeline_code],
)